Comparison of snag and shoreline macroinvertebrate samples -A bioassessment of the Missouri River

Kansas Biological Survey Report No. 161

25 May 2010

by

Debra S. Baker and Donald G. Huggins

Central Plains Center for BioAssessment Kansas Biological Survey University of Kansas

DRAFT 1.1

Prepared in fulfillment of USEPA EPA Contract EP-D-06-106, KUCR # FED43180

Introduction

The Great Rivers of North America, which account for a large proportion of the available water resources within the United States, are disproportionately impaired. Nonpoint source pollution from agriculture, alterations of hydrological patterns, reductions in floodplain quality and quantity, and invasive species are some of the many disturbances that threaten the integrity of the Great River Ecosystems (GRE) (Benke, 1990; Karr and Chu, 2000; Justic *et al.*, 2003). Relative to other aquatic habitats such as wadeable streams and lakes, limited effort has been directed towards the development of bioassessment tools for GREs. Consequently, effective bioassessment tools must first be developed for these important ecosystems before local, regional, or national assessment programs can be designed and implemented (McDonald *et al.*, 2004).

To address this, the USEPA coordinated the National Great Rivers Survey

(www.epa.gov/emap/greatriver/index.html) in which state and federal agencies sampled the Upper Mississippi, Missouri, and Ohio Rivers using the Environmental Monitoring and Assessment Program – Great River Ecosystems (EMAP-GRE) protocols (Angradi 2006). The Central Plains Center for Bioassessment (CPCB) took part in this effort by sampling 8 Lower Missouri River sites (Table 1, Figure 1). The EMAP-GRE protocols included sampling macroinvertebrates in two habitats by two methodologies: 1) near-shore littoral areas with a kick net and 2) main channel snags by boat with a modified kick net. Angradi *et al.* 2009 details these methods and statistical results.

To assess the variability in samples collected using the two methodologies, CPCB collected three additional replicates of each method at each of the 8 sites. Snags were present at 4 sites, while littoral samples were collected at all 8 sites, and with three samples of each method this totaled 36 samples. In addition to examining insite variability at the 8 CPCB sites, we compared these macroinvertebrate faunages with those found in the national study.

Table 1. Location of eight study sites on the lower Missouri River, with codes used in graphs and nearby city if applicable. Collection of kick and/or snag samples is indicated, along with date sampled.

site #	code	latitude	longitude	city	state	kick	snag	date
1257	1	39.5803	-95.0566			Yes	No	28-Aug-2006
1241	2	39.6196	-95.0553			Yes	No	28-Aug-2006
1281	3	39.8756	-95.0255	St. Joseph	MO	Yes	Yes	1-Aug-2006
1249	4	39.8629	-95.0667			Yes	Yes	30-Jul-2006
1265	5	39.8670	-95.0988			Yes	Yes	30-Jul-2006
1253	6	40.0773	-95.4087	Rulo	NE	Yes	No	3-Aug-2006
1297	7	40.1302	-95.4106	Rulo	NE	Yes	No	2-Aug-2006
1285	8	40.5246	-95.7502	Peru	NE	Yes	Yes	12-Aug-2006

Figure 1. Map of the Missouri River and sampling sites. Black square on United States inset indicates sampling area. Black circles indicate sites in which both littoral and snag samples were collected. Hollow circles indicates site in which only littoral samples were collected.

Methods

See Angradi *et al.* 2009 for site location methods and sampling details. Each site consisted of a 500 m river segment that was divided into 11 transects. At each transect, two shoreline 30-second kick benthic samples were collected using a 500 μ m mesh kick net. All 22 samples (11 transects x two 30-second samples) were combined into one composite sample. This process was repeated two more times at each transect to derive three composited samples for each site. Also within each river segment we attempted to collect a 1-m long sample from each of three snags using a 500 μ m mesh snag net. Snag samples were not combined. Only four sites contained snags. Thus from four sites we collected three kick samples and three snag samples (24 samples), and from four sites we collected only the three kick samples (12 samples).

All benthic samples were preserved in buffered formalin with rose Bengal, returned to the laboratory, and transferred to 95% ethanol. Samples were processed following EMAP methods which included picking specimens from random grids in a Canton tray until specimen counts reached 500+20% (excluding "large and rare" taxa which were retained from other grids). Specimens were identified to genus where possible, and data entered into an MSAccess database. If total count in a sample exceeded 500+20% specimens, data were randomly removed to bring the total count down to 600. See <u>www.cpcb.ku.edu/datalibrary/assets/library/protocols/BenthicLabSOP2009.pdf</u> for detailed benthic lab protocols. From the final macroinvertebrate dataset the following community characteristics and metrics were calculated for each sample:

Taxonomic composition: Taxa richness (number of taxa in the sample), % Ephemeroptera taxa (i.e. number Ephemeroptera taxa divided by total number of taxa in the sample), % Trichoptera taxa, % EPT taxa, % Chironomidae taxa.

Abundance composition: Total abundance (number of specimens in the sample), % Ephemeroptera abundance (i.e. number Ephemeroptera specimens divided by total number of specimens in the sample), % Trichoptera abundance, % EPT abundance, % Chironomidae abundance, Dominant taxa.

Diversity indices: Metrics measuring abundance (evenness), Evenness, Shannon's Index, Brillouin's Index.

Similarity indices: Jaccard Coefficient, Bray-Curtis Similarity, Bray-Curtis Distance.

Diversity and similarity indices were calculated using EcoMeas 1.6 (2005). Statistical analyses were performed in NCSS (Hintze 2004). Data that were not normal were log+1 transformed prior to analyses. If the data of both factors of habitat (littoral or snag) and site were normal, we looked at habitat x site interactions with 2-way GLM ANOVA. If there was not an interaction then we examined data with 1-way GLM ANOVA. Significance was reported at $p \le 0.05$.

Results and Discussion

In littoral samples, 11764 specimens comprised 177 taxa, while on snags 136 specimens comprised 22 taxa (Table 2). All taxa found on snags were also found in littoral samples. See Appendix 1 for the three dominant taxa of each sample. The most dominant taxa by sample type were similar to the most dominant taxa found in the national GRE study (Angradi *et al.* 2009) in littoral and snag locations on the lower Missouri River (Table 3). Four of the six most abundant taxa found in littoral samples, Oligochaeta (24.5%), Pseudocloeon (9.3%), Corixidae (all Trichocorixa, 8.0%), and Caenis (6.2%) comprised the four most abundant littoral taxa found by Angradi *et al.* (2009): immature Tubificidae without capilliform chaetae (12.3%), Pseudocloeon (8.8%), Caenis (5.2%), and Corixidae (4.4%). Three of the four most abundant taxa on snags, Pseudocloeon (25.4%), Rheotanytarsus (16.4%), and Tanytarsus (10.7%) also comprised three of the four most abundant snag taxa (13.8%, 12.2%, and 6.5 respectively) found by Angradi *et al.* (2009).

	# spec	imens	# t	axa
Taxon	littoral	snag	littoral	snag
Ephemeroptera	2613	57	21	4
Plecoptera	7	0	4	0
Trichoptera	490	14	15	6
Chironomidae	4086	83	30	7
other	4568	23	66	5
total	11764	177	136	22

Table 2. Number of specimens and taxa in each type of sample.

Table 3. The 22 most abundance macroinvertebrate taxa in littoral kick samples and mid-channel snags collected from eight Missouri River sites. This list includes all taxa collected from snags.

taxa	abundance %	taxa	abundance %
littoral		snag	
Oligochaeta	24.53	Pseudocloeon	25.42
Tanytarsus	10.10	Rheotanytarsus	16.38
Pseudocloeon	9.27	Polypedilum	15.82
Trichocorixa	8.02	Tanytarsus	10.73
Rheotanytarsus	7.28	Atrichopogon	5.08
Caenis	6.15	Caenis	4.52
Polypedilum	4.76	Rhagovelia	3.95
Chironomus	4.28	Hydropsychidae	2.82
Maccaffertium	3.49	Hemerodromia	2.26
Thienemannimyia group	3.43	Cricotopus/Orthocladius	1.69
Potamyia	1.41	Cheumatopsyche	1.69
Telopelopia	1.25	Mayatrichia	1.13
Hemerodromia	1.18	Oligochaeta	1.13
Cryptochironomus	1.05	Hydropsyche	1.13
Musculium	0.91	Maccaffertium	1.13
Isonychia	0.77	Stenochironomus	1.13
Cladotanytarsus	0.77	Amercaenis	1.13
Nectopsyche	0.60	Thienemannimyia group	0.56
Amercaenis	0.60	Gomphidae	0.56
Argia	0.58	Ceraclea	0.56
Physa	0.55	Dicrotendipes	0.56
Hydroptila	0.54	Nectopsyche	0.56

The objective of this study was to determine if samples collected using the same method varied within sites, and if samples varied between sites. We expected samples to vary between sites, but methods should not lend themselves to variability within a site. Ideal metrics should have high discriminate ability and low sensitivity to sample size (Table 4). For metrics (both real and log+1 transformed) in which both snag and littoral data were normally distributed, significant (p<0.05) habitat x site interactions (GLM ANOVA) existed for taxa richness, abundance, Brillouin's, Margalef's Index, Shannon's Index, dominance (3 taxa), and abundance and richness of EPT, Ephemeroptera, and Chironomidae (Table 5). Thus, these metrics are ideal for detecting differences among snag and littoral samples. However, Stepenuck *et al.* (2008) cautions against intermixing metrics collected by different sampling methods.

Metric	Discriminate ability	Sensitivity to sample size
richness	good	high
Brillouin's Index	moderate	moderate
Margalef's Index	good	high
McIntosh's Index	poor	moderate
Shannon's Index (H')	moderate	moderate
Simpson's Index	moderate	low

Table 4. Ability of some macroinvertebrate metrics to discriminate among samples and relative sensitivity to sample size (references).

Table 5. Results of GLM AOVA on real or log 1+transformed metrics of four sites at which both snag and littoral samples were collected. Transforming did not normalize all variables. 2-Way GLM ANOVA was used unless there was not a significant habitat x site interaction, in which case 1-Way GLM ANOVA was used. * $p \le 0.05$.

metric	habitat x site	habitat	site
Taxa richness	*	*	*
Abundance (total count)	*	*	*
Brillouin's Index	*	*	
Margalef's Index	*	*	*
McIntosh's Index (not normal)			
Richness/Abundance (not normal)		*	
Shannon's Index (H') (not normal)	*	*	
Simpson's Index (not normal)			
EPT rich	*		*
E rich	*		*
T rich (transformed)	*		*
C rich (transformed)	*	*	*
EPT abundance	*		*
E abundance	*		
T abundance (not normal)	*		*
C abundance	*	*	*
Dominance 3 taxa	*	*	

To compare within and between site variability among samples, we examined the standard deviations by creating error bar charts in which standard deviations are shown as lines extending zero (Figure 2). To center the standard deviations on zero, the average of the three samples of a given method collected at each site was subtracted from the metric value of each sample. Error bar charts for all metrics are presented in Appendix 2, with sample sizes in Table 2.

Figure 2. Error bar charts for EPT abundance in which standard deviations are shown as lines extending from zero, for eight littoral kick samples and four mid-channel snag samples. Sites are coded from downstream (site 1) to upstream. See Table 1 for site localities.

In conclusion, taxa collected from multiple samples at each site in this study reflected the taxa collected from one sample at each site in the larger national GRE effort. Taxa richness, abundance, Brillouin's, Margalef's Index, Shannon's Index, dominance (3 taxa), and abundance and richness of EPT, Ephemeroptera, and Chironomidae which exhibited significant habitat x site interactions are ideal for determining if macroinvertebrate differences exist between habitats (snag vs. littoral) and between sites.

Acknowledgements

Thanks to everyone who made this work possible. *Field crews:* Sarah Schmidt, Alex Bartlett, Adam Blackwood, Don Huggins, Anne Leaser, Bryant Merriman, Brian O'Neill, Geoff Warlick. *Macroinvertebrate lab:* Mary Anne Blackwood, Adam Blackwood, Cosmo Canacari, Greg Dillon, Anne Leaser. *USEPA:* Ted Angradi, Brian Hill, Dave Bolgrien, Teri Jicha. Additional thanks to Mary Anne Blackwood and Bob Everhart for metric and statistical discussions, and Andy Dzialowski Co-PI.

References

Angradi, T.R. (editor). 2006. Environmental Monitoring and Assessment Program: Great River Ecosystems, Field Operations Manual. EPA/620/R-06/002. U.S. Environmental Protection Agency, Washington, D.C.

Angradi, T.R., D.W. Bolgrien, T.M. Jicha, M.S. Pearson, D.L. Taylor, and B.H. Hill. 2009. Multispatialscale variation in benthic and snag-surface macroinvertebrate assemblages in mid-continent US great rivers. J. North Amer. Benth. Soc. 28(1):122-141.

Benke, A.C. 1990. A perspective on America's vanishing streams. J. North Amer. Benth. Soc. 9:77-88.

EcoMeas 1.6. 2005. Central Plains Center for Bioassessment, Lawrence, KS.

Hintze, J. 2004. NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, UT. www.ncss.com.

Justic, D., R.E. Turner, and N.N. Rabalais. 2003. Climatic influences on riverine nitrate flux: implications for coastal marine eutrophication and hypoxia. Estuaries, 26:1-11.

Karr, J.R. and E.W. Chu. 2000. Sustaining living rivers. Hydrobiologia, 422/423:1-14.

McDonald, M. and 18 others. 2004. The U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. In Wiersma, G.B. (ed.), Environmental Monitoring, CRC Press, Florida, pp. 649-668.

Stepenuck, K.F., R.L. Crunkilton, M.A. Bozek, and L. Wang, 2008. Comparison of Macroinvertebrate-Derived Stream Quality Metrics Between Snag and Riffle Habitats. Journal of the American Water Resources Association (JAWRA) 44(3):670-678. Appendix 1. Abundance of the three dominant taxa in each sample collected from eight Missouri River sites, by littoral kick sample and mid-channel snag.

site habitat sample taxa % 1241 Iittoral A Rheotanytarsus 14.10 A Tanytarsus 13.36 A Oligochaeta 12.62 B Tanytarsus 17.13 B Rheotanytarsus 13.20 C Oligochaeta 13.22 C Tanytarsus 13.20 C C Oligochaeta 63.42 Snag D Caenis 26.32 1249 Iittoral A Oligochaeta 63.42 Snag D Pepudocloeon 26.32 B Oligochaeta 63.42 Snag D Pepudocloeon 26.32 B Oligochaeta 63.42 E Polypedilum 26.32 B D Pseudocloeon 0.21 E Polypedilum 26.32 C C Trichocorixa 14.23 F Polypedilum 63.64 F Pseudocloeon 0.21 F Polypedilum 63.64	51005, 0	<i>y moot m</i>			abundance				abundance
A Tanytarsus 13.36 A Oligochaeta 12.62 B Tanytarsus 17.13 B Rheotanytarsus 13.22 C Oligochaeta 13.22 C Oligochaeta 13.22 C Tanytarsus 12.23 A Oligochaeta 69.74 A Trichocorixa 13.92 A Trichocorixa 14.44 B Oligochaeta 63.42 B Oligochaeta 44.07 C Trichocorixa 14.44 B Pseudocloeon 6.12 E Paeudocloeon 18.57 C Trichocorixa 14.23 A Chironomus 34.22 A Chironomus 26.13 B Trichocorixa 14.23 C Restonytarsus 18.63 C Ranytarsus 18.63 C Ranytarsus 18.61 D Chigochaeta	site	habitat	sample	taxa		habitat	sample	taxa	
A Oligochaeta 12.62 B Raptarsus 13.22 B Oligochaeta 13.52 C Oligochaeta 13.52 C Tanytarsus 13.22 B Oligochaeta 13.52 C Tanytarsus 13.30 C Tanytarsus 13.22 A Tichocorixa 13.32 A Oligochaeta 69.74 B Oligochaeta 63.42 B Fichocorixa 13.32 C Oligochaeta 63.42 B Pseudocloeon 15.21 C Oligochaeta 44.07 C Tichocorixa 30.67 A Chrionomus 34.22 A Trichocorixa 47.91 B Chrionomus 34.22 A Trichocorixa 14.23 C Tanytarsus 16.85 C Trichocorixa 14.23 B Oligochaeta <td< td=""><td>1241</td><td>littoral</td><td>A</td><td>Rheotanytarsus</td><td>14.10</td><td></td><td></td><td></td><td></td></td<>	1241	littoral	A	Rheotanytarsus	14.10				
B Tanytarsus 17.13 B Rheotanytarsus 13.22 B Oligochaeta 10.24 C Oligochaeta 13.52 C Tanytarsus 13.30 C Rheotanytarsus 12.23 A Oligochaeta 68,74 A Trichocorixa 13.92 B Oligochaeta 68,74 B Oligochaeta 68,74 B Oligochaeta 63,42 E Pseudocloeon 15,79 B Trichocorixa 21.88 F Polypedilum 63.64 F Polypedilum 63.64 F Pseudocloeon 18.18 A Chironomus 34.22 A Trichocorixa 11.88 C Tanytarsus 16.95 C Trichocorixa 14.23 B Oligochaeta 12.06 A Tanytarsus 13.55 C Rheotanytarsus <td></td> <td></td> <td>А</td> <td>Tanytarsus</td> <td>13.36</td> <td></td> <td></td> <td></td> <td></td>			А	Tanytarsus	13.36				
B Riedianytarsus 13.22 B Oligochaeta 13.52 C Oligochaeta 13.52 C Tanytarsus 12.23 1249 littoral A Oligochaeta 68.74 A Trichocorixa 13.92 D Polypedilum 26.32 A Chironomus 3.78 D Pseudocloeon 15.79 B Oligochaeta 63.42 E Pseudocloeon 23.81 C Oligochaeta 44.07 F Polypedilum 19.57 B Pseudocloeon 20.21 F Panytarsus 19.57 Itorial A Chironomus 34.22 F Polypedilum 03.64 C Trichocorixa 47.91 B Chrionomus 47.91 B Chrionomus 42.23 1253 Iittoral A Oligochaeta 11.98 C Tanytarsus 16.65 C Trichocorixa 14.23 Snag <td< td=""><td></td><td></td><td>А</td><td>Oligochaeta</td><td>12.62</td><td></td><td></td><td></td><td></td></td<>			А	Oligochaeta	12.62				
B Oligochaeta 10.24 C Oilgochaeta 13.50 C Tanytarsus 13.30 C Rhedanytarsus 12.23 1249 littoral A Oilgochaeta 66.74 A Trichcocrixa 13.92 Snag D Caenis 26.32 A Trichcocrixa 13.44 E Pseudocloeon 15.79 B Oilgochaeta 63.42 E Pseudocloeon 15.79 B Pseudocloeon 63.42 E Polypedilum 19.57 B Pseudocloeon 21.88 F Polypedilum 63.64 C Trichcocrixa 21.88 F Polypedilum 63.64 C Trichcocrixa 30.67 A Tanytarsus 9.09 1253 littoral A Chironomus 26.13 F Tanytarsus 9.09 1257 littoral A Coligochaeta 11.98 F Tanytarsus 1			В	Tanytarsus	17.13				
C Oligochaeta 13.52 C Tanytarsus 12.23 1249 littoral A Oligochaeta 69.74 A Trichcoorixa 13.92 D Polypedilum 26.32 B Oligochaeta 63.42 E Pseudocloeon 23.91 B Trichcoorixa 14.44 E Polypedilum 63.64 C Oligochaeta 44.07 E Pseudocloeon 23.91 C Oligochaeta 20.21 F Polypedilum 63.64 C Trichcoorixa 30.67 A Oligochaeta 9.09 1253 littoral A Chironomus 26.13 B Oligochaeta 22.06 A Trichcoorixa 14.23 Tanytarsus 16.95 Snag D Hagovelia 54.55 C Rheotanytarsus 15.54 B Rheotanytarsus 15.49 B D Hydropsyche 54.55 C Rheotanytarsus			В	Rheotanytarsus	13.22				
C Tanytarsus 13.30 1249 littoral A Oligochaeta 69.74 snag D Caenis 26.32 A Trichcoorika 13.92 D Polypedium 26.32 B Oligochaeta 63.42 E Pseudocloeon 15.79 B Prichcoorika 14.44 E Polypedium 19.57 B Pseudocloeon 6.12 E Tanytarsus 15.22 C Oligochaeta 44.07 F Polypedium 19.57 B Pseudocloeon 20.21 F Tanytarsus 15.22 C Oligochaeta 20.04 F Polypedium 63.64 A Trichcoorika 47.91 B Chironomus 34.22 A Oligochaeta 22.06 A Reotanytarsus 18.83 A Nagochaeta 22.06 A A Nagochaeta 22.26 Reotanytarsus 13.35 E Pseudocloeon 75.00 Pseudocloeon				Oligochaeta	10.24				
C Rheitanytarsus 12.23 1249 Iittoral A Oligochaeta 69.74 A Chironomus 3.78 D Polypedilum 26.32 A Chironomus 3.78 D Pseudocloeon 15.79 B Oligochaeta 63.42 E Pseudocloeon 23.91 B Trichocorixa 14.44 E Polypedilum 15.79 C Oligochaeta 44.07 E Tanytarsus 15.22 C Oligochaeta 20.21 F Polypedilum 63.64 C Trichocorixa 31.82 F Pseudocloeon 81.81 1253 Iittoral A Chironomus 26.13 B Coligochaeta 21.98 C Tanytarsus 16.83 C Rheotanytarsus 16.83 F Polypedilum 64.54 1257 Iittoral A Caenis 20.81 Snag D Cheumatopsche 9.09			С	Oligochaeta	13.52				
1249 littoral A Oligochieta 68.74 A Trichocorixa 13.92 A Chironomus 3.78 B Oligochieta 63.42 D Polypedilum 26.32 B Trichocorixa 14.44 E Pseudocloeon 15.79 B Pseudocloeon 6.12 E Pseudocloeon 23.91 C Oligochieta 44.07 E Tanytarsus 15.22 C Oligochieta 44.07 F Polypedilum 63.64 C Trichocorixa 21.88 F Pseudocloeon 18.18 C Pseudocloeon 20.04 F Polypedilum 63.64 B Trichocorixa 14.23 F Tanytarsus 9.09 1257 littoral A Oligochieta 12.69 F Tanytarsus 13.81 C Trichocorixa 14.23 15.50 C O Coligochieta 18.38 A T				Tanytarsus	13.30				
A Trichocorixa 13.92 D D Polypedilum 26.32 B Oligochaeta 63.42 D Pseudocloeon 15.79 B Trichocorixa 14.44 E Polypedilum 19.57 B Pseudocloeon 6.12 E Pseudocloeon 18.79 C Oligochaeta 44.07 F Polypedilum 63.64 C Trichocorixa 21.88 F Polypedilum 63.64 C Trichocorixa 30.67 F Polypedilum 63.64 B Trichocorixa 47.91 F Tanytarsus 9.09 C Tanytarsus 18.83 C Reotanytarsus 16.95 C Trichocorixa 14.23 Trichocorixa 14.23 Tanytarsus 18.83 1257 littoral A Oligochaeta 22.06 A Tanytarsus 18.47 B Tanytarsus 13.93 D Hagovelia 54.55			С	Rheotanytarsus	12.23				
A Chironomus 3.78 D Pseudocloeon 15.79 B Oligochaeta 63.42 E Pseudocloeon 23.91 B Pseudocloeon 6.12 E Polypedilum 19.57 C Oligochaeta 44.40 F Polypedilum 19.57 C Oligochaeta 21.88 F Polypedilum 63.64 C Trichocorixa 21.88 F Polypedilum 63.64 C Trichocorixa 30.67 A 7 F Polypedilum 63.64 A Chironomus 34.22 A Trichocorixa 47.91 B F Tanytarsus 9.09 B Oligochaeta 11.98 C Tanytarsus 18.83 F Tanytarsus 9.09 1257 Iittoral A Coligochaeta 16.95 C Oligochaeta 22.06 A Tanytarsus 15.50 C C Oligochaeta 22.461 B A	1249	littoral	А	Oligochaeta	69.74	snag	D	Caenis	26.32
B Oligochaeta 63.42 E Pseudocloeon 2.3.91 B Trichocorixa 14.44 E Polypedilum 19.57 C Oligochaeta 44.07 F Polypedilum 63.64 C Trichocorixa 34.22 F Polypedilum 63.64 A Chironomus 34.22 F Polypedilum 63.64 A Chironomus 34.22 F Polypedilum 63.64 B Trichocorixa 47.91 B F Tanytarsus 9.09 1253 littoral A Oligochaeta 20.04 F Tanytarsus 9.09 21257 littoral A Oligochaeta 11.94 B Rheotanytarsus 18.83 C Tanytarsus 18.83 C Rheotanytarsus 18.47 B Oligochaeta 22.26 C Rheotanytarsus 13.50 C C Oligochaeta 13.35 D Hydropsyche			А	Trichocorixa	13.92			Polypedilum	26.32
B Trichocorixa 14.44 E Polypedilum 19.57 B Pseudocloeon 6.12 E Tanytarsus 15.22 C Oiligochaeta 44.07 E Tanytarsus 15.22 1253 littoral A Chironomus 34.22 F Posudocloeon 18.18 A Trichocorixa 30.67 A Oiligochaeta 20.04 F Tanytarsus 9.09 1253 littoral A Chironomus 30.67 A Oiligochaeta 20.04 F Polypedilum 18.18 B Trichocorixa 47.91 B Chironomus 26.13 B C Tanytarsus 18.92 C Tanytarsus 18.82 C Trichocorixa 14.23 E F Polypedilum 49.44 B Oiligochaeta 16.47 B Tanytarsus 15.50 C C Oiligochaeta 18.42 E Pseudocloeon 75.00				Chironomus	3.78			Pseudocloeon	15.79
B Pseudocloeon 6.12 E Tanytarsus 15.22 C Oligochaeta 44.07 F Polypedilum 63.64 C Trichocorika 21.88 F Pseudocloeon 18.18 C A Chironomus 34.22 A Trichocorika 20.04 A Trichocorika 20.07 A Oligochaeta 20.04 B Trichocorika 47.91 B F Tanytarsus 9.09 B C Tanytarsus 18.83 C Rheotanytarsus 16.95 C Trichocorika 14.23 A Oligochaeta 22.06 A A Oligochaeta 22.25 C Rheotanytarsus 15.50 C C Tanytarsus 13.35 D Hydropsyche 18.18 A Oligochaeta 18.38 D Hydropsyche 9.09 E Seudocloeon 75.00 B C Caenis 20.81 <td></td> <td></td> <td>В</td> <td>Oligochaeta</td> <td>63.42</td> <td></td> <td></td> <td>Pseudocloeon</td> <td>23.91</td>			В	Oligochaeta	63.42			Pseudocloeon	23.91
C Oligochaeta 44.07 C F Polypedilum 63.64 F C Pseudocloeon 21.88 C F Pseudocloeon 18.18 F 1253 littoral A Chironomus 34.22 A Trichocorixa 30.67 A A Oligochaeta 20.04 B Trichocorixa 47.91 B F Tanytarsus 9.09 B Chironomus 26.13 B Oligochaeta 11.98 C F Tanytarsus 9.09 C Rheotanytarsus 16.85 C Trichocorixa 14.23 C F Tanytarsus 15.50 C I257 littoral A Oligochaeta 22.06 A Tanytarsus 15.50 C F Nagovelia 54.55 C Rheotanytarsus 13.35 Snag D Rhagovelia 54.55 Ititoral A Caenis 20.81 S Snag D Rhagovelia 54.55 Ititoral A Caenis 11.18 A Snag D Rheotanytarsus 25.00 D D				Trichocorixa				Polypedilum	19.57
C Trichocorixa 21.88 F Pseudocloeon 18.18 1253 littoral A Chironomus 34.22 A Trichocorixa 30.07 A Oligochaeta 20.04 B Trichocorixa 30.67 B Trichocorixa 20.04 B Trichocorixa 9.09 B Trichocorixa 20.04 B Trichocorixa 9.09 C Tanytarsus 18.83 C Strippolytarsus 16.95 C Trichocorixa 14.23 Trichocorixa 14.23 Trichocorixa 14.23 1257 littoral A Oligochaeta 22.06 A Tanytarsus 18.18 B Tanytarsus 11.54 B B Rheotanytarsus 19.70 C Tanytarsus 13.35 Snag D Rhagovelia 54.55 Itoral A Caenis 13.36 D Cheumatopsyche 9.09 B Oligochaeta 40.				Pseudocloeon	6.12		Е	Tanytarsus	15.22
C Pseudocloeon 20.21 F Tanytarsus 9.09 1253 littoral A Chironomus 34.22 A Oligochaeta 20.04 B Trichocorixa 47.91 B Chironomus 26.13 B Chironomus 26.13 B Chironomus 16.95 C Tanytarsus 18.83 C Rheotanytarsus 18.02 A Rheotanytarsus 18.02 A Rheotanytarsus 18.02 A Rheotanytarsus 15.50 C C C Nitroposcheata 22.25 C Rheotanytarsus 13.35 D Hydropsyche 18.18 1265 littoral A Caenis 22.25 C Rheotanytarsus 13.35 1265 littoral A Caenis 13.94 D Cheumatopsyche 18.18 A Tanytarsus 13.94 D Cheumatopsyche 30.00 C Caenis 11.18 E Cheumatopsyche 6.25 C			С	Oligochaeta	44.07			Polypedilum	63.64
1253 littoral A Chironomus 34.22 A Trichocorixa 30.67 A Oligochaeta 20.04 B Trichocorixa 47.91 B Oligochaeta 20.04 B Chironomus 26.13 B Oligochaeta 11.98 C Tanytarsus 18.83 C Rheotanytarsus 16.95 C Trichocorixa 14.23 1257 littoral A Oligochaeta 22.06 A Tanytarsus 11.54 B Rheotanytarsus 14.23 B Rheotanytarsus 15.50 C C Rheotanytarsus 13.35 1265 Littoral A Caenis 20.81 snag D Rhagovelia 54.55 C Oligochaeta 40.98 E Pseudocloeon 75.00 B Tanytarsus 13.34 D Cheumatopsyche 6.25 C Oligochaeta				Trichocorixa	21.88			Pseudocloeon	18.18
A Trichocorixa 30.67 B Trichocorixa 20.04 B Trichocorixa 47.91 B Chironomus 26.13 B Oligochaeta 11.98 C Tanytarsus 18.83 C Rheotanytarsus 16.95 C Trichocorixa 14.23 1257 littoral A Oligochaeta A Oligochaeta 22.06 A Tanytarsus 11.54 B Rheotanytarsus 15.50 C Oligochaeta 22.25 C Rheotanytarsus 13.35 1265 littoral A Caenis 20.81 A Oligochaeta 40.98 E Pseudocloeon B Caligochaeta 38.48 F Hydropsyche 18.18 A Tanytarsus 13.36 E Cheumatopsyche 6.25 B Caenis 11.18 E Cheumatopsyche 6.26 <				Pseudocloeon	20.21		F	Tanytarsus	9.09
AOligochaeta20.04BTrichocorixa47.91BChironomus26.13BOligochaeta11.98CTanytarsus18.83CRheotanytarsus16.95CTrichocorixa14.231257littoralAOligochaetaAOligochaeta22.06ATanytarsus11.54BRheotanytarsus11.54BRheotanytarsus12.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38ACaenis20.81AOligochaeta40.98BOligochaeta38.48COligochaeta38.48FHydropsyche6.25BCaenis11.18ECheumatopsyche6.25BCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.00CTanytarsus13.32AAccaffertium11.27BTanytarsus16.43BTanytarsus9.86FPseudocloeon8.33FPolypedilum00.00CTanytarsus16.43BTanytarsus16.43BTanytarsus9.86FPseudocloeon8.33B	1253	littoral	А	Chironomus	34.22				
B Trichocorixa 47.91 B Chironomus 26.13 B Oligochaeta 11.98 C Tanytarsus 18.83 C Rheotanytarsus 16.95 C Trichocorixa 14.23 1257 littoral A Oligochaeta 22.06 A Tanytarsus 18.02 A Rheotanytarsus 11.54 B Rheotanytarsus 24.61 B Oligochaeta 12.57 C Oligochaeta 22.25 C Rheotanytarsus 13.35 1265 littoral A Caenis A Cligochaeta 18.38 A Oligochaeta 18.38 A Caenis 20.81 A Oligochaeta 18.38 B Oligochaeta 40.98 B Tanytarsus 12.55 B Colochaeta 38.48 F Pydropsyche 6.25 C Oligochaeta 38.33 F Pydropsychidae 30.00 C Caenis 19.68 F Pydropsychidae 30.00 C Coligochaeta 38.4			А	Trichocorixa					
BChironomus26.13BOligochaeta11.98CTanytarsus18.83CRheotanytarsus16.95CTrichocorixa14.231257littoralAOligochaetaAOligochaeta22.06ATanytarsus18.02ARheotanytarsus18.02ARheotanytarsus24.61BBOligochaetaBOligochaeta22.25CRheotanytarsus13.351265littoralACaenisAOligochaeta20.81AOligochaeta40.98BOligochaeta40.98BCaenis11.18BCaenis12.55BCaenis11.18ECheumatopsyche9.09BOligochaeta38.48CTanytarsus12.55BCaenis19.68FPseudocloeon27.06ATanytarsus13.321281littoralAAPseudocloeon27.66BTanytarsus13.32BTanytarsus13.32BTanytarsus16.43BTanytarsus16.43BTanytarsus16.43BPseudocloeon15.61CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33 </td <td></td> <td></td> <td></td> <td>Oligochaeta</td> <td></td> <td></td> <td></td> <td></td> <td></td>				Oligochaeta					
BOligochaeta11.98CTanytarsus18.83CRheotanytarsus16.95CTrichocorixa14.231257littoralAOligochaeta22.06ATanytarsus18.02ARheotanytarsus11.54BRheotanytarsus24.61BOligochaeta22.25COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265LittoralACaenisAOligochaeta20.81AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94BTanytarsus12.55BCaenis11.18COligochaeta38.48FHydropsyche6.25COligochaeta38.33FPolypedilum20.001281LittoralAPseudocloeonAMaccaffertium11.27BTanytarsus13.32BTanytarsus13.32BTanytarsus13.33FPolypedilum20.001281LittoralABTanytarsus13.32BTanytarsus13.33FPolypedilum66.67CTanytarsus20.40FPolypedilum66.67CTanytarsus20.40FPolypedilum66.67CTanytars			В	Trichocorixa	47.91				
C Tanytarsus 18.83 C Rheotanytarsus 16.95 C Trichocorixa 14.23 1257 littoral A Oligochaeta 22.06 A Tanytarsus 18.02 A A Rheotanytarsus 11.54 B Rheotanytarsus 24.61 B Oligochaeta 22.25 C Oligochaeta 22.25 C Rheotanytarsus 13.35 1265 littoral A Caenis 20.81 A Oligochaeta 18.38 D Hydropsyche 18.18 A Oligochaeta 18.38 D Hydropsyche 18.18 A Oligochaeta 40.98 E Pseudocloeon 75.00 B Caenis 11.18 E Cheumatopsyche 6.25 C Oligochaeta 38.48 F Hydropsychidae 30.00 C Tanytarsus 13.33 F Polypedilum				Chironomus	26.13				
CRheotanytarsus Trichocorixa16.95 14.231257littoralAOligochaeta 22.06 A Tanytarsus18.02 A Rheotanytarsus1257littoralATanytarsus Tanytarsus18.02 A RheotanytarsusARheotanytarsus Tanytarsus11.54 BBRheotanytarsus Tanytarsus15.50 CCOligochaeta C22.25 CCRheotanytarsus Tanytarsus13.351265littoralACaenis C20.81 BACaenis C20.81 Bsnag DRhagovelia HydropsycheACaenis C20.81 BSnag DHydropsyche EBOligochaeta B18.38 CDATanytarsus C12.55ERheotanytarsus BBOligochaeta B38.48 CFHydropsyche BCCaenis C19.68 CFPseudocloeon CCTanytarsus A13.32DTanytarsus C1281littoral AAPseudocloeon A Tanytarsus16.43 CERheotanytarsus CBTanytarsus A16.43 CERheotanytarsus C50.00 CAMaccaffertium H1.27DPseudocloeon C8.33BTanytarsus R16.43 CERheotanytarsus CBRheotanytarsus C16.43 									
C Trichocorixa 14.23 1257 littoral A Oligochaeta 22.06 A Tanytarsus 18.02 A A Rheotanytarsus 11.54 B Rheotanytarsus 24.61 B Oligochaeta 16.47 B Tanytarsus 15.50 C Oligochaeta 22.25 C Rheotanytarsus 19.70 C Tanytarsus 13.35 1265 littoral A Caenis 20.81 A Oligochaeta 18.38 D Hydropsyche 18.18 A Tanytarsus 12.55 E Rheotanytarsus 12.55 B Caenis 11.18 E Cheumatopsyche 6.25 C Oligochaeta 38.48 F Hydropsychidae 30.00 C Tanytarsus 8.33 F Polypedilum 20.00 1281 littoral A Pseudocloeon 27.66				Tanytarsus					
1257littoralAOligochaeta22.06ATanytarsus18.02ARheotanytarsus11.54BRheotanytarsus24.61BOligochaeta16.47BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38AOligochaeta18.38BOligochaeta40.98BTanytarsus12.55BCaenis11.18COligochaeta38.48CCaenis19.68FPseudocloeon75.00BTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeonATanytarsus13.32BTanytarsus13.32BTanytarsus16.43BPseudocloeon56.61CTanytarsus20.40FPolypedilum20.00BRheotanytarsus9.86CTanytarsus20.40CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FPolypedilum66.67									
ATanytarsus18.02ARheotanytarsus11.54BRheotanytarsus24.61BOligochaeta16.47BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisACaenis20.81AOligochaeta18.38AOligochaeta18.38AOligochaeta18.38ATanytarsus13.94BOligochaeta40.98BCaenis11.18CColigochaeta38.48CCaenis19.68CCaenis19.68CCaenis19.68FPseudocloeon27.66BTanytarsus13.32I281littoralAAPseudocloeon27.66BTanytarsus13.32BTanytarsus16.43BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33				Trichocorixa					
ARheotanytarsus11.54BRheotanytarsus24.61BOligochaeta16.47BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38AOligochaeta48.38AOligochaeta40.98BTanytarsus12.55BCaenis11.18BCaenis11.18COligochaeta38.48CCaenis11.18BCaenis11.18CColigochaeta38.33FPolypedilum20.00CTanytarsus13.32DRheotanytarsus13.32DRheotanytarsus13.32DRheotanytarsus13.321281littoralAAPseudocloeon27.66SnagDRheotanytarsusATanytarsus13.32BTanytarsus13.32BTanytarsus16.43BPseudocloeon15.61BRheotanytarsusDPseudocloeonBRheotanytarsusBRheotanytarsusBRheotanytarsusBRheotanytarsusCTanytarsusBRheotanytarsusBRheotanytarsusCTanytarsus <t< td=""><td>1257</td><td>littoral</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1257	littoral							
BRheotanytarsus Oligochaeta24.61BOligochaeta16.47BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38AOligochaeta18.38ATanytarsus13.94BOligochaeta40.98BOligochaeta40.98BCaenis11.18CCaenis11.18CColigochaeta38.48CCaenis19.68CCaenis19.68CTanytarsus8.33FPolypedilum20.001281littoralAAPseudocloeon27.66AMaccaffertium11.27BTanytarsus16.43BTanytarsus16.43BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33				Tanytarsus					
BOligochaeta16.47BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38AOligochaeta40.98BOligochaeta40.98BTanytarsus12.55BCaenis11.18CCOligochaetaBOligochaeta38.48CCaenis19.68CCaenis19.68CCaenis19.68FPseudocloeon20.001281littoralAAPseudocloeon27.66AMaccaffertium11.27BRheotanytarsus16.43BTanytarsus16.43BPseudocloeon15.61CTanytarsus9.86CTanytarsus9.86CTanytarsus9.86CTanytarsus20.40CTanytarsus20.40CHemerodromia13.33FPolypedilum66.67				-					
BTanytarsus15.50COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenisAOligochaeta18.38AOligochaeta18.38ATanytarsus13.94BOligochaeta40.98BTanytarsus12.55BCaenis11.18COligochaeta38.48CCaenis19.68CCaenis19.68CTanytarsus13.321281littoralAAPseudocloeon27.66AMaccaffertium11.27BRheotanytarsus13.32AMaccaffertium11.27BRheotanytarsus9.86CTanytarsus9.86CTanytarsus9.86CTanytarsus9.86CTanytarsus33.33FPolypedilum66.67CTanytarsus20.40CTanytarsus20.40CHemerodromia13.33FRheotanytarsus33.33									
COligochaeta22.25CRheotanytarsus19.70CTanytarsus13.351265littoralACaenis20.81AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDTanytarsusAMaccaffertium11.27DPseudocloeon8.33ERheotanytarsus50.00ATanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CTanytarsus20.40FPolypedilum66.67 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
CRheotanytarsus19.70CTanytarsus13.351265littoralACaenis20.81snagDRhagovelia54.55AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsusAMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61CTanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
CTanytarsus13.351265littoralACaenis20.81snagDRhagovelia54.55AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus50.00DPseudocloeon8.331281littoralAPseudocloeon15.61BRheotanytarsus9.86BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
1265littoralACaenis20.81snagDRhagovelia54.55AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00AMaccaffertium11.27DPseudocloeon8.33ERheotanytarsus25.00BTanytarsus16.43ERheotanytarsus100.00FPolypedilum66.67CTanytarsus20.40FPolypedilum66.67CTanytarsus20.40FRheotanytarsus33.3333.33				-					
AOligochaeta18.38DHydropsyche18.18ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus50.00DTanytarsus25.00BTanytarsus16.43ERheotanytarsus100.00ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FReotanytarsus33.33									
ATanytarsus13.94DCheumatopsyche9.09BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00A8.33ERheotanytarsus25.00BTanytarsus16.43ERheotanytarsus100.005.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33	1265	littoral				snag			
BOligochaeta40.98EPseudocloeon75.00BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.008.33100.0015.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.6733.33CHemerodromia13.33FPolypedilum66.67									
BTanytarsus12.55ERheotanytarsus12.50BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00A33.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
BCaenis11.18ECheumatopsyche6.25COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
COligochaeta38.48FHydropsychidae30.00CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33							E		
CCaenis19.68FPseudocloeon20.00CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33							<u> </u>		
CTanytarsus8.33FPolypedilum20.001281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
1281littoralAPseudocloeon27.66snagDRheotanytarsus50.00ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
ATanytarsus13.32DTanytarsus25.00AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
AMaccaffertium11.27DPseudocloeon8.33BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33	1281	littoral				snag			
BTanytarsus16.43ERheotanytarsus100.00BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
BPseudocloeon15.61BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
BRheotanytarsus9.86CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33							E	Rheotanytarsus	
CTanytarsus20.40FPolypedilum66.67CHemerodromia13.33FRheotanytarsus33.33									
C Hemerodromia 13.33 F Rheotanytarsus 33.33				-					
C Pseudocloeon 13.13								Rheotanytarsus	
			C	Pseudocloeon	13.13				

DRAFT - Missouri River GRE

site	habitat	sample	taxa	abundance %	ha
1285	littoral	A	Caenis	16.07	
1200	intorai	A	Thienemannimyia	10.07	
		A	group	12.50	
		Α	Pseudocloeon	10.71	
		В	Caenis	16.25	
		В	Pseudocloeon	13.07	
			Thienemannimyia		
		В	group	10.60	
		С	Pseudocloeon	19.87	
		С	Caenis	14.33	
		С	Tanytarsus	10.75	
1297	littoral	Α	Pseudocloeon	29.44	
		Α	Tanytarsus	15.15	
		Α	Oligochaeta	10.39	
		В	Pseudocloeon	34.44	
		В	Oligochaeta	22.08	
		В	Trichoptera	8.39	
		С	Oligochaeta	49.90	
		С	Trichocorixa	8.77	
		С	Polypedilum	6.26	
			• •		

habitat	sample	taxa	abundance %
snag	D	Pseudocloeon	53.85
	D D	Atrichopogon Rheotanytarsus	23.08 7.69
	E E	Pseudocloeon Atrichopogon	22.22 16.67
	Е	Tanytarsus	16.67
	F	Pseudocloeon	40.00
	F	Rheotanytarsus	40.00
	F	Atrichopogon	20.00

Appendix 2.

To compare within and between site variability among samples, we examined the standard deviations by creating error bar charts in which standard deviations are shown as lines extending from zero. To center the standard deviations on zero, the average of the 3 samples of a given method collected at each site was subtracted from the metric value of each sample. E = Ephemeroptera, P = Plecoptera, T = Trichoptera, Chiron. = Chironomidae.

