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Project Summary 
 

The production of taste and odor compounds (i.e. geosmin and 2-methyl  

isoboreol) by blue green algae, or cyanobacteria, can negatively impact the quality of 

drinking water.  Because costs to remove taste and odor compounds from source water 

can be high, it is not practical to continuously treat water for this.  Instead, predictive 

tools are needed that allow water treatment operators to determine when taste and odor 

events are most likely to occur.  The purpose of this study was to develop a series of 

models for predicting geosmin concentrations using data collected from different 

temporal and spatial scales.   

We developed water quality models using data collected from five eastern Kansas 

reservoirs (Big Hill, Cheney, Clinton, Gardner, and Marion).  These reservoirs were 

selected to represent a range of reservoir conditions and sizes in Kansas.  Geosmin and 

associated water quality data were collected from several sample locations at each 

reservoir at roughly monthly intervals between June and December of 2006.  From this 

data, water quality models were developed to provide predictive tools that can be used 

estimate geosmin concentrations in real time.  Both single and multiple variable water 

quality models were developed using all of the reservoir data combined (i.e., universal 

models) and for each reservoir individually.   

In addition to the water quality models mentioned above, we developed landscape 

models using remotely sensed data and GIS techniques.  These models were developed to 

determine if watershed characteristics could be used to predict taste and odor events.  

These models assessed relationships between normalized difference vegetation index 

(NDVI) values, which are correlated with green plant biomass and vegetation cover 
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within the watershed, and geosmin.  Because suitable long-term geosmin and associated 

water quality data were not available for the five study reservoirs, we used data from two 

drinking water reservoirs in Oklahoma.   

Moderate-resolution Imaging Spectroradiometer (MODIS) 16-day composite 

Normalized Difference Vegetation Index (NDVI) 250-meter resolution data from the 

NASA Terra and Aqua remote-sensing satellites was evaluated for its ability to detect 

and monitor changes in water quality (possible algal blooms) for a series of federal 

reservoirs in Kansas.  MODIS NDVI data values were extracted for each of the water 

bodies for each of the 23 composite periods in 2006, and enhanced to highlight possible 

algae blooms in the reservoirs. 

Our study findings, conclusions, and recommendations related to both water 

quality and watershed models are presented below: 

1. Elevated geosmin concentrations (>10 ng/L) were observed in all of the reservoirs 

except Gardner.  Taste and odor compounds were common in the summer in most 

of the reservoirs, and in the winter in two of the reservoirs (Big Hill and Clinton).  

The lack of taste and odor events in the eutrophic Gardner, combined with the 

presence of taste and odor events in the mesotrophic Big Hill, suggest that trophic 

state alone is not a good indicator of taste and odor events in Kansas reservoirs.   

2. A universal water quality model using data from four of the reservoirs (Gardner 

data was excluded) was developed that explained 36% ( coefficient of 

determination r2 =0.36 ) of the variation in geosmin concentrations using the  

single variable orthophosphorus (PO4).  A three-variable universal model was also 
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developed that explained 53% of the variation in geosmin (GEOS) concentrations 

using PO4, temperature, and total phosphorus.   

3. The universal reservoir models explained relatively high percentages of the 

variation in geosmin concentrations considering that data was collected from 

multiple reservoirs, and multiple sampling sites and dates within each reservoir.  

However, they likely do not provide enough predictive power to make water 

treatment decisions.  Instead, individual reservoir models explained a greater 

percentage of the variation in geosmin concentrations in most reservoirs.  

Therefore, individual reservoirs models, or models developed for reservoirs with 

similar characteristics such as size, depth, and trophic state, are likely needed to 

predict taste and odor events. 

4. Of the study reservoirs, the individual models for Big Hill explained the greatest 

percentage of the variation in geosmin.  The biomass of the cyanobacteria genus 

Aphanizomenon explained 87% of the variation in geosmin in a single variable 

model, while Aphanizomenon biomass and PO4 explained 93% of the variation in 

geosmin in a two-variable model.   

5. Significant one and three variable models were also developed that explained 

between 50-82% and 33-72% of the variation in geosmin for Clinton and Marion, 

respectively.  Surprisingly, we were unable to develop any significant models for 

geosmin using the data collected from Cheney.  Models were not developed for 

Gardner because it did not experience taste and odor events during the study. 

6. Watershed models were developed and showed that there was a significant 

correlation between NDVI values and December geosmin concentrations in 
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Eucha Reservoir.  Although this relationship was based on a limited number of 

points, it does suggest that watershed characteristics may provide some indication 

of potential taste and odor events in drinking water reservoirs. 

7. Significant models were developed for predicting geosmin concentrations using 

both water quality variables and watershed data.  However, it is important to note 

that the models have not been tested and their accuracy in predicting actual taste 

and odor events in a water treatment framework is unknown.  Therefore, 

additional sampling and data is needed to test the models in the five study 

reservoirs, and in a larger group of reservoirs to determine their applicability 

across reservoir types.   

8. MODIS NDVI 16-day composite data may provide a means of post-facto 

mapping and monitoring of possible algal blooms within reservoirs.  Limitations 

of the methodology, however, remain.  The 16-day compositing period limits real-

time monitoring of bloom events, and the NDVI values should be calibrated  with 

on-lake sampling of algal concentrations to establish a detection point (minimum 

concentration of algae to be detectable by satellite sensors) in order to both avoid 

false positives and missed detections.  Water levels should be taken into account 

as well;  if a reservoir is sufficiently low that vegetation appears on exposed 

mudflats (e.g., Kanopolis Lake in 2006), the NDVI will be high and should not be 

misinterpreted as an algae bloom. 
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Study Rationale 
 

Taste and odor events impact the quality of drinking water obtained from lakes 

and reservoirs throughout Kansas (e.g. Arruda and Fromm 1989; Smith et al., 2002; 

Wang et al., 2005; Christensen et al. 2006).  While a number of microorganisms produce 

organic compounds (i.e. geosmin and 2-methylisoborneol – MIB) that affect the taste and 

smell of drinking water, taste and odor events are most often associated with blooms of 

blue-green algae or cyanobacteria (e.g. Izaguirre et al., 1982; van der Ploeg et al., 1992; 

Saadoun et al., 2001).  Because humans can detect geosmin and other taste and odor 

compounds at very low concentrations (5-10 ng/L, Taylor et al., 2006), there is only a 

short window of opportunity to treat a developing taste and odor event before customer 

complaints are received.  Furthermore, costs associated with such treatment can be high, 

and it is not practical or feasible for most facilities to continuously treat water for taste 

and odor.  Instead, predictive tools are needed to determine when taste and odor events 

are most likely to occur (Izydorczyk et al., 2005).   

The purpose of this study was to develop a series of predictive models that could 

be used as early indicators of developing taste and odor events in Kansas reservoirs.  

Specifically, we explored two types of models that operate at different spatial and 

temporal scales.  First, we developed models for predicting geosmin concentrations using 

collected water quality variables (Section 1).  Second, we developed watershed models 

using watershed characteristics within a watershed to predict geosmin concentrations 

(Section 2).  Third, we used Moserate-resolution Imaging Spectroradiometer (MODIS) 

data to document changes in water quality from ten Kansas reservoirs.  The results from 

these modeling efforts are presented below in three sections.   
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1.  Water Quality Models 
Introduction 

One approach to managing taste and odor events is to simply measure the 

concentrations of geosmin or other taste and odor compounds on a regular basis.  

Measured concentrations of geosmin could then be used treat before concentrations are 

high enough for human detection in source water.  However, analysis of geosmin 

concentrations requires a great deal of technical training and equipment, and sending 

samples to a contract lab can be very expensive and results are often not received in a 

time frame that allows for water treatment decisions based on current reservoir 

conditions.  Alternatively, there may be correlations between geosmin concentrations and 

water quality variables that are easier and more cost effective to measure.  For example, it 

is possible that changes in cyanobacterial biomass could be monitored using laboratory 

counts or with in-situ fluorometers to predict the onset of taste and odor events (e.g., 

Izydorczyk et al., 2005).  Similarly, a number of water quality variables can affect 

cyanobacterial biomass, and changes in these variables may be used to monitor and 

potentially predict the occurrence of taste and odor events.  Potential predictor variables 

that can affect cyanobacterial biomass and are relatively easy to measure include nutrient 

concentrations and ratios (Downing et al., 1999; Smith and Bennett, 1999), water clarity 

(Havens et al., 1998), water temperature and pH (Shapiro, 1990), and food web structure 

(Hunt et al., 2003). 

A theoretical framework for using relationships between geosmin and water 

quality variables to predict the occurrence of taste and odor events is shown in Figure 1 

(V.H. Smith unpublished data, Smith et al., 2002).  Geosmin concentrations may be 

correlated with one or more predictor variables, which are easier and more cost effective 
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to measure.  The predictor variable(s) could then be used to estimate geosmin 

concentrations and ultimately influence when to treat or not treat drinking water.   

The goal of this section of the study was to develop a series of relatively simple 

models for predicting geosmin concentrations using measured water quality variables 

from five Kansas reservoirs.  Furthermore, we were interested in determining if 

“universal” models developed using all of the data from the five reservoirs combined 

would provide as much predictive power as models developed for each reservoir 

individually. 

 
 

 

 

 

 

 

 

 
 
 
 

Figure 1.  Theoretical framework for using water quality models to predict taste and odor 
events in drinking water reservoirs.  Concentrations of geosmin may be correlated with a 
series of predictor variables that are easier and more cost effective to measure.  The 
predictor variable could then be used to estimate geosmin concentrations and influence 
treatment decisions.  Figure modified from V.H. Smith (unpublished data). 
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Methods 

Reservoir Sampling and Data Collection 

Five Kansas reservoirs were selected to study taste and odor events: Big Hill, 

Cheney, Clinton, Gardner, and Marion (Figure 2).  These reservoirs were selected with 

the help of Ed Carney, Kansas Department of Health  and Environment (KDHE) and 

personnel from the Kansas Water Office (KWO), to represent a range of reservoir 

conditions and sizes in Kansas.  Furthermore, each of these reservoirs has experienced 

taste and odor events in the past (E. Carney, KDHE, personnel communication).  The five 

reservoirs were sampled at roughly monthly intervals from June to October 2006, while 

Big Hill and Clinton were also sampled several times in December and/or January 2007 

during specific taste and odor events.  Table 1 shows the sampling  schedule . 

A number of chemical, physical, and biological variables were measured at each 

reservoir (Table 2).  Samples were collected from three sampling sites to assess spatial 

variability in each reservoir: one in the riverine zone, one in the transition zone, and one 

in the lacustrine zone.  If a reservoir had inflow from more than one tributary, we 

sampled from the tributary that was associated with the stream (river) having the greatest 

discharge.  At each site, in-situ measurements of dissolved oxygen, turbidity, specific 

conductance, pH, and water temperature were obtained with a Horiba field water quality 

checker at 1m depth intervals.  A Secchi Disk was used to measure water transparency.   

Two water samples were collected at each site from a depth of 1.5m below the 

surface and returned to the Kansas Biological Survey Ecotoxicology Laboratory for 

analysis of nutrients (total and dissolved nitrogen, phosphorus), chlorophyll a, and 

geosmin concentrations.   
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Figure 2.  Reservoir locations: BH – Big Hill; CH – Cheney; CL – Clinton; GA – 
Gardner; and MA – Marion. 

 
 
 

Table 1.  Sampling schedule for each of the five reservoirs over the course of the study. 

 Big Hill Cheney Clinton Gardner Marion 
 

6-27-06 
 

6-26-06 
 

7-3-06 
 

6-27-06 
 

6-26-06 
7-12-06 7-10-06 7-25-06 7-12-06 7-10-06 
7-24-06 7-25-06 8-17-06 8-8-06 7-25-06 
8-8-06 8-7-06 8-30-06 9-25-06 8-7-06 
9-25-06 9-6-06 9-13-06 10-18-06 9-6-06 
1-2-07 10-2-06 10-5-06  10-2-06 

 
 

Sample 
Date 

  12-15-06  
 

 

 

BH 

CH 

CL GA 

MA 
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Table 2.  Water quality and biological variables used in model development. 

 
NO2-N 
NO3-N 
NH3-N 

Total Nitrogen 
PO4-P 

Total Phosphorus 
TN:TP ratio 

Chlorophyll a 
Phaeophytin a 

Water temperature 
Turbidity 

Dissolved oxygen 
Specific conductance 

pH 
Secchi Disk 

 

 
Aphanizomenon Biovolume 

% Aphanizomenon 
Microcystis Biovolume 

% Microcystis 
Anabaena Biovolume 

% Anabaena 
Oscillatoria Biovolume 

% Oscillatoria 
Total Biovolume of other taxa 

% Other Taxa 
Total Cyanobacterial Biovolume 

% Total Cyanobacteria 
Total Algal Biomass 

 

Nutrient concentrations were determined colorimetrically (APHA, 1995) with a 

Lachat analyzer (Model 4200).  Samples for dissolved nutrients (NO3-N, NH4-N, and 

PO4-P) were filtered through Gelman Science’s ion chromatography acrodisc filters (0.45 

µm) before analysis.  Total nitrogen (TN) and total phosphorus (TP) concentrations were 

determined using the automated colorimetric procedures after persulfate digestion of 

unfiltered samples (Ebina, et al., 1983).  All nutrient analysis was performed within 48 

hours of sample collection. 

Chlorophyll a concentrations were determined by first filtering the algae from the 

water samples onto Whatman GF/F glass fiber filters.  The filters were folded in fourths 

and frozen to rupture the cells.  Chlorophyll a concentrations were extracted in 90% basic 

methanol (10% saturated MgCO3) for at least 24 hours.  The concentration of chlorophyll 

a, corrected for phaeophytin a, was then determined by measuring the fluorescence of the 
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sample with the Optical Technologies fluorometer before and after acidification (APHA, 

1995).   

Geosmin concentrations were also determined at the Ecotoxicology Laboratory 

using the solid phase extraction (SPE) technique followed by gas chromatography and 

mass spectrometry (GC/MS) as refined by Pan (2002).  The methodological detection 

limit for geosmin was 5 ng/L.   

Water samples from each site were preserved in Lugol’s solution for taxonomic 

determinations of cyanobacteria.  We identified and enumerated cyanobacteria following 

procedures outlined in Utermöhl (1958) and APHA et al. (1998).   Briefly, 5 ml’s from 

each sample were settled in a chamber for 24 hours.  A total of 25-50 microscope fields 

were then randomly chosen and counted at greater than 400x magnification.  

Cyanobacteria were identified to genus, and biovolume estimates were provided for the 

most common taxa including Aphanizomenon, Anabaena, Microcystis, and Oscillatoria.  

We focused specifically on these taxa because they tend to dominate cyanobacterial 

communities in Kansas reservoirs (F. deNoyelles, personal communication).   We also 

quantified the biovolume of all additional organisms using the same methodology so that 

we could determine the percentage of cyanobacterial biovolume in each sample. 

In-situ Hydrolab multiprobe units were placed at a depth of 1.5m below the 

surface in three of the reservoirs (Clinton Lake, Gardner Lake, and Marion Reservoir).  

The multiprobe units were outfitted with a cyanobacteria sensor that uses fluorescence 

technology to provide real-time measurements of phycocyanin (cyanobacterial pigments) 

concentrations.  The probes were programmed to collect data at 15-30 minute intervals.   
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Additional Data Requests 

In an effort to increase our dataset for model development (see below), we 

requested previously collected water quality and taste and odor data from all public water 

systems in the state of Kansas that used reservoirs or lakes as sources of raw water in 

2004.  In addition, we sent out a broader request for data to more than 400 regional 

limnologists.  Despite these data solicitation efforts we received very little data, and those 

data that we did receive that included information on geosmin concentrations did not 

have predictor variables (i.e. water quality data) associated with the datasets.  The 

exceptions to this included data provided by United States Geological Survey (USGS, 

Lawrence, KS) and Val Smith at the University of Kansas ( KU).  However, there were 

concerns that data from these other sources was collected using different methodologies 

and were not necessarily compatible with the reservoir sampling conducted in this study.  

Therefore, models were developed using only data collected by the KBS as part of the 

current study (see below).   

 In addition to the five reservoirs mentioned above, we had originally proposed to 

sample a number of reservoirs as they experienced taste and odor events.  To accomplish 

this, we asked that water treatment personnel in the state of Kansas notify KBS within 

24-hours of identifying or suspecting the onset of a taste and odor event in their reservoir.  

We only received one notification of a taste and odor event from Hillsdale Reservoir; 

however, when we sampled the reservoir we found no signs of an event.   

Model Development 

Regression analysis was used to develop relatively simple models for estimating 

geosmin concentrations from the collected water quality variables (Table 2).  Similar 



 17

modeling approaches have recently been used to estimate geosmin and additional water 

quality parameters by the USGS in Kansas streams and reservoirs (e.g. Mau et al., 2004; 

Christensen et al., 2006).  Prior to model development, all of the water quality variables 

were checked for normality.  When data did not meet the assumption of normality, log10 

transformations were conducted.  Two types of regression analyses were used to develop 

predictive geosmin models.  First, we used best-subsets regression, which provides the 

two one-variable models with the highest coefficient of variation (r2) values, the two two-

variable models with the highest r2 values, and so on (Sokal and Rohl, 1995).  Second we 

used step-wise multiple regression, which is a procedure that adds variables to a model 

one at a time if they increase the significance of the model.  It adds variables until no 

more can be added to increase the r2 of the model.   

Each of the regression procedures provided a number of statistically significant 

regression models (alpha ≤ 0.05).  Therefore, there were several considerations that we 

took into account when selecting the “best” regression models.  First, from a statistical 

standpoint we evaluated the r2 value (coefficient of determination) of each model, which 

provides a measure of how much of the variation in geosmin concentrations is 

determined or explained by the predictor variable(s).  Models with high r2 values were 

selected for further consideration.  Second, from a water treatment perspective, we 

retained models that included variables that were relatively easy and inexpensive to 

collect.  For example, if two models had relatively similar r2 values, but the model with 

the highest r2 (better predictor of geosmin) included variables that were relatively 

difficult to collect, we presented the model with the slightly lower r2.  This was not 
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always possible and some of the more promising models with analytically “costly” 

variables are included in this report. 

Both single and multiple variable models were developed for the individual 

reservoirs and for “universal” reservoir models in which all of the data were combined 

from four of the five reservoirs.   Data from Gardner Lake was not included in the model 

development because taste and odor events were rare during the study period (see results 

below).   

We also incorporated data collected as part of the United States Army Corps of 

Engineers (USACE) Kansas City District’s monitoring program into our model 

development.  In the summer of 2007, a total of 39 geosmin samples were collected from 

18 reservoirs located over a broad geographic region including nine in Kansas (Clinton 

Lake, Hillsdale Lake, Kanopolis Lake, Melvern Lake, Milford Lake, Perry Lake, Pomona 

Lake, Tuttle Creek Lake and Wilson Lake), seven  in Missouri (Blue Springs Lake, Harry 

S. Truman Lake, Long Branch Lake, Longview Lake, Pomme de Terre Lake, Smithville 

Lake and Stockton), one in Nebraska (Harlan County Lake) and one in Iowa (Rathbun 

Lake).   

The data from the USACE was used in two ways in model development.  First, 

we added it to our larger “universal” data set (Big Hill, Clinton, Cheney and Marion) to 

reevaluate the relationships between geosmin and water quality conditions with this 

additional data from multiple reservoirs.  Stepwise and best subset regressions were used 

on the combined data set (KBS and USACE) as described above to determine if it 

provided more predictive power than the original dataset (KBS alone).  Second, we used 

stepwise and best subset regressions to develop predictive models for the USACE data 
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alone.  It is important to point out that the USACE dataset included nutrient data only.  

Therefore, only seven variables were used to create these additional models (NO2, NO3, 

NH3, PO4, TN, TP and TN:TP).   

Results 

General Water Quality Conditions   

Water quality conditions varied considerably in the five reservoirs (Table 3).  In 

general, total nutrient and chlorophyll concentrations and turbidity were the lowest in Big 

Hill and the highest in Marion.  There were also strong positive relationships between TP 

and chlorophyll (log10Chl = 0.14 + 0.67(log10TP), r2=0.65) and TN and chlorophyll 

(log10Chl = -2.21 + 1.23(log10TN), r2=0.61) in the reservoirs (Figure 3).  We used the 

ranges of total nutrient and chlorophyll concentrations presented in Smith et al. (1999) to 

characterize the trophic state of each reservoir.  Big Hill was classified as mesotrophic, 

while Cheney, Clinton, and Gardner were classified as eutrophic, and Marion was 

classified as hypereutrophic.  
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Table 3.  Average water quality variables collected at each reservoir.  Data represents average values from multiple samples collected 
at each reservoir over the course of the study from multiple sites.  Standard deviations are in parentheses. 

 

 
Lake 

 

Geosmin 
(ng/L) 

pH 
 

Cond. 
(mS cm-1) 

DO 
(mg/L)

Turb. 
(NTU) 

Secchi Disk
(cm) 

Water 
Temp. (˚C)

NO3
--N 

(mg/L) 
NH3-N
(mg/L)

TN 
(mg/L)

PO4
-3-P 

(µg/L) 
TP 

(µg/L)
TN/TP

 
Chl a 
(µg/L)

 
Big Hill 11 8.29 0.23 8.54 12 142 23.1 0.07 35.1 581 6.8 23.4 29 12.7 
 (9.3) (0.4) (0.02) (1.51) (3.4) (28) (8.0) (0.10) (34.1) (92) (5.7) (7.4) (17.3) (5.0) 
 
Cheney 7 8.63 0.79 9.10 62 49 25.7 0.04 27.1 884 15.5 85.2 11 27.2 
 (3.0) (0.18) (0.01) (1.58) (43.8) (16) (3.05) (0.03) (24.5) (153) (6.8) (35.7) (1.93) (7.9) 
 
Clinton 11 8.43 0.30 9.60 34 69 22.7 0.07 21.2 655 13.7 61.0 12 21.3 
 (8.1) (0.31) (0.03) (1.96) (22.3) (30) (7.93) (0.05) (15.5) (108) (6.9) (24.1) (3.6) (6.4) 
 
Gardner 3 8.29 0.36 7.94 25 78 23.8 0.12 67.6 800 23.1 78.7 12 25.6 
 (1.1) (0.50) (0.46) (3.20) (12.1) (23) (5.5) (0.24) (85.1) (336) (29.9) (56.6) (3.2) (23.7) 
 
Marion 8 8.60 0.53 8.00 94 42 24.3 0.05 44.5 1734 70.2 206.3 7 50.6 
 (8.5) (0.21) (0.05) (1.19) (73.3) (16) (2.84) (0.07) (61.9) (1970) (33.3) (73.3) (1.8) (35.9) 
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Figure 3.  Significant regression relationships between chlorophyll a and total nutrient 
concentrations in the dataset from the five Kansas reservoirs. 
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The reservoirs also differed in their mixing/stratification patterns.  Figure 4 shows examples 

of typical summer temperature profiles from the five reservoirs that were collected during the study 

on various sample dates.  Big Hill and Gardner showed strong patterns of thermal stratification, 

while the remaining three reservoirs did not thermally stratify.  Strong thermal stratification was not 

observed on any sample date in Clinton, Cheney, or Marion. 
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Figure 4.  Temperature profiles from each of the five Kansas reservoirs.  The profiles were collected 
on various dates between June 1 and September 1, 2006 to show differences in stratification 
patterns. 
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Figure 5.  Regression relationships between total cyanobacterial biovolume (TOTCYA) and total 
algal biovolume (TOTALG) and TOTCYA and chlorophyll concentrations (CHL). 
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There was a positive relationship between total algal biovolume and total cyanobacterial 

biovolume (log10TOTCYA = -2.47 + 1.33(log1TOTALG), r2=0.47), but not between chlorophyll a 

concentrations and total cyanobacterial biovolume (log10TOTCYA = 4.87 + 0.41(log10CHL), 

r2=0.04) in the reservoirs (Figure 5).  Big Hill consistently had the highest percentage of 

cyanobacteria biovolume (between 65-90%, Figure 6) followed by Cheney (between 35-70%,Figure 

7).  Aphanizomenon and Anabaena were the dominant cyanobacterial taxa in Big Hill and Cheney 

respectively.  Cyanobacteria tended to account for less than 50% of the total algal biovolume in 

Clinton (between 10-45%,Figure 8), Gardner (between 3-50%,Figure 9), and Marion (between 15-

45%, Figure 10).  Anabaena was the dominant taxa of cyanobacteria in these three reservoirs 

(Figures 8-10). 
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Figure 6.  Percent biovolume data for cyanobacterial taxa in Big Hill. 
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Cheney

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

6/2
6/2

00
6

7/3
/20

06

7/1
0/2

00
6

7/1
7/2

00
6

7/2
4/2

00
6

7/3
1/2

00
6

8/7
/20

06

8/1
4/2

00
6

8/2
1/2

00
6

8/2
8/2

00
6

9/4
/20

06

9/1
1/2

00
6

9/1
8/2

00
6

9/2
5/2

00
6

10
/2/

20
06

Date

Pe
rc

en
t B

io
vo

lu
m

e

% Other Algae
% Oscillatoria
% Anabaena 
% Microcystis
% Aphanizomenon

 

Figure 7.  Percent cyanobacteria biovolume data for Cheney. 
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Figure 8.  Percent cyanobacteria biovolume data for Clinton. 
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Gardner
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Figure 9.  Percent cyanobacteria biovolume data for Gardner. 
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Figure 10.  Percent cyanobacteria biovolume data for Marion. 
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Taste and Odor Compound 

Geosmin concentrations were below human detection limits (5 ng/L) in the majority of 

samples collected from Gardner Lake.  In contrast, geosmin concentrations exceeded human 

detection limits in 67%, 89%, 86%, and 55% of the samples collected from Big Hill, Cheney, 

Clinton, and Marion respectively (Figure 11).  Differences also existed in the temporal patterns of 

geosmin concentrations in the reservoirs.  In two of the reservoirs, Big Hill and Clinton, the highest 

geosmin concentrations were observed in December (Figure 12).  In Marion, the highest geosmin 

concentrations were observed in July and September when dense algal blooms were visually 

observed in the reservoir.  There was much less temporal variation in geosmin concentrations in 

Cheney and Gardner (Figure 12).  Additionally, there was little variation in geosmin concentrations 

in the three zones of each reservoir (Figure 12). 
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Figure 11.  Percentage of reservoir samples that had geosmin concentrations that exceeded human 
detection limits (5 ng/L) throughout the course of the study. 
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Figure 12.  Geosmin concentrations measured over the course of the study at each reservoir site. 
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Relative Fluorescence Concentrations 

Fluorometers, which were programmed to record relative phycocyanin concentrations at 1-

hour intervals, were placed 1.5m below the surface in three of the reservoirs: Clinton, Gardner, and 

Marion.  However, shortly after the probe was placed in Gardner it was determined to be non-

functional.  Therefore, data is only presented for Clinton and Marion (Figure 13).  The fluorescence 

values are relative values that can be compared within individual reservoirs, but not necessarily 

between reservoirs.   

Phycocyanin concentrations peaked in early October in Clinton and relatively high 

concentrations were also observed towards the end of October (Figure 13).  A similar pattern was 

observed in Marion where phycocyanin concentrations were highest when the probe was placed in 

early October, and then began to decrease by the middle of October (Figure 13). 

Model Development 

Exploratory models were originally developed using several scenarios.  Models were first 

developed individually for each of the three zones of the reservoirs (lacustrine, transition, and 

riverine) as well as models using all of the data from each of the three sampling sites in each 

reservoir combined.  However, there were very few differences in geosmin concentrations between 

the three sites in most reservoirs (Figure 12).  Furthermore, models including all of the reservoirs 

sampling site data combined provided relatively similar predictive power as did the models that 

used data from each specific site individually (not shown).  Because no distinctions were made 

between the three zones of the reservoirs all of the spatial data were combined for model 

development.   
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Figure 13.  Relative phycocyanin concentrations measured at 1-hour intervals with submersed 
fluorometers in Clinton and Marion. 

 

All of the models presented below are statistically significant (alpha < 0.05).  Regression 

models are first presented for all of the data combined from each of the four reservoirs (Universal 

Models) and then for each reservoir individually (Individual Reservoir Models).  
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Universal Models 
Universal regression models were first developed using all of the data from each of the four 

reservoirs (Big Hill, Clinton, Cheney, and Marion) combined.  A single-variable model was 

developed that explained 36% (r2 – coefficient of determination) of the variation in geosmin 

(GEOS) concentrations (Figure 14): 

(1) log(GEOS) = 1.25 – 0.38 log(PO4), r2=0.36 

where GEOS is geosmin and PO4 is orthophosphorus.  No other significant one-variable models 

were developed.   

A three-variable universal model was developed that explained 53% of the variation in 

geosmin (GEOS) concentrations: 

(2) log(GEOS) = 1.45 – 0.61 log(PO4) – 0.62 log(TEMP) + 0.50 log(TP), r2=0.53 

where PO4 is orthophosphorus, TEMP is temperature, and TP is total phosphorus.   
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Figure 14.  Significant regression relationship between PO4 and geosmin in all reservoirs.  See text 
for regression equation and r2 value (Equation 1).  Horizontal line corresponds with geosmin 
concentration of 5 ng/L. 
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Individual Reservoirs Models 

Big Hill Lake 

A single-variable quadratic regression model was developed for Big Hill that explained 87% 

of the variation in geosmin (GEOS) concentrations (Figure 15):  

(3)  (3) log(GEOS) = -0.06 + 0.04(%APH) – 0.002(%APH)2, r2=0.87 

where %APH is the percentage of Aphanazomenon biovolume.  A second single-variable model 

was developed for Big Hill that explained 77% of the variation in geosmin (GEOS) concentrations 

(Figure 15): 

(4) log(GEOS) = 1.36 – 0.79 log(PO4), r2=0.77 

where PO4 is orthophosphate. 

 A two-variable model that explained 93% of the variation in geosmin concentrations was 

also developed for Big Hill:  

(5) log(GEOS) = 0.752 – 0.448 log(PO4) + 0.012(%APH), r2=0.93 

where PO4 is orthophosphate and %APH is the percentage of Aphanazomenon biovolume. 

Clinton Lake 

A single-variable regression model was developed for Clinton that explained 50% of the 

variation in geosmin (GEOS) concentrations (Figure 16):  

(6) log(GEOS) = 0.443 + 0.007(SECC), r2=0.50 

where SECC is Secchi Disk depth.  A second single-variable model was developed for Clinton that 

explained 43% of the variation in geosmin (GEOS) concentrations (Figure 16): 

(7) log(GEOS) = 1.34 – 0.029(PO4), r2=0.43 

where PO4 is orthophosphate. 
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Figure 15.  Significant regression relationship between % Aphanizomenon biovolume and geosmin 
and PO4 and geosmin in Big Hill.  Horizontal line corresponds with geosmin concentrations of 5 
ng/L.  See text for regression equations and r2 values (Equations 3 and 4). 
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Figure 16.  Significant regression relationship between Secchi Disk depth and geosmin and PO4 and 
geosmin in Clinton.  Horizontal line corresponds with geosmin concentrations of 5 ng/L.  See text 
for regression equations and r2 values (Equations 6 and 7). 
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 A three-variable model that explained 82% of the variation in geosmin concentrations was 

also developed for Clinton:  

(8) log(GEOS) = 1.38 + 1.78(TN) – 1.45 log(TEMP) + 0.01(%CYAN), r2=0.82 

where TN is total nitrogen, TEMP is temperature, and %CYAN is the percent of cyanobacterial 

biovolume.   

CheneyLake 

We were unable to develop significant regression models for predicting geosmin 

concentrations using the data collected from Cheney (all models P>0.05).  

Marion Reservoir 

A single-variable regression model was developed for Marion that explained 33% of the 

variation in geosmin (GEOS) concentrations (Figure 17):  

(9) log(GEOS) = 0.88 + 0.28 log(TOTCYA), r2=0.33 

where TOTCYA is total cyanobacterial biovolume.  A second single variable model was developed 

for Marion that explained 30% of the variation in geosmin (GEOS) concentrations (Figure 17): 

(10) log(GEOS) = 2.69 – 1.14 log(PO4), r2=0.30 

A three-variable model that explained 72% of the variation in geosmin concentrations was 

also developed for Marion:  

(11) log(GEOS) = -10.7 + 0.98(pH) + 0.012(SECC) + 0.44 log(TOTCYA), r2=0.72 
 

where SECC is Secchi Disk depth and TOTCYA is total blue-green biomass.    



 36

Total Cyanobacterial Biovolume (µm3/mL)

10000 100000 1000000 10000000

G
eo

sm
in

 (n
g/

L)

1

10

PO4 (µg/L)
10 100

G
eo

sm
in

 (n
g/

L)

1

10

 

Figure 17.  Significant regression relationship between Total Cyanobacterial Biovolume and 
geosmin and PO4 and geosmin in Marion.  Horizontal line corresponds with geosmin concentrations 
of 5 ng/L.  See text for regression equations and r2 values (Equations 9 and 10). 
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United States Army Corps of Engineers Dataset 

The occurrence of taste and odor events (geosmin >5 ng/L) were much less frequent in the 

USACE samples than were observed in the samples collected for the majority of the study 

reservoirs.  For example, geosmin concentrations greater then 5 ng/L were only observed in 18% (7 

out of 39) the USACE samples.  In general, the inclusion of the USACE data reduced the 

significance of the predictive models that were originally obtained using the KBS data set alone.  

Furthermore, we were unable to develop any models that could be used to significantly (P<0.05) 

predict geosmin concentrations using the USACE data set alone.   

Discussion and Conclusions 

Taste and odor events impact drinking water reservoirs throughout Kansas (e.g. Arruda and 

Fromm, 1989; Smith et al., 2000; Wang et al., 2005; Christensen et al., 2006).  Because treatment 

costs can be high, it is not practical to continuously treat water for taste and odor control.  Instead, 

predictive tools are needed that allow water treatment managers to determine when taste and odor 

events are most likely to occur to help make treatment decisions.  The purpose of this study was to 

develop a series of relatively simple models for predicting the occurrence of geosmin concentrations 

using data collected from several eastern Kansas reservoirs.   

Spatial and Temporal Trends in Geosmin  

 In general, there was little spatial variation in geosmin concentrations on individual 

sampling dates within each reservoir (Figure 12).  These results suggest that geosmin production did 

not result from localized processes that were limited to specific regions of the reservoirs (i.e., 

periphyton production in the shallower branches of a reservoir).  Instead, geosmin concentrations 

tended to be relatively similar at the three sampling sites on any given date, indicating that geosmin 

was either being produced throughout the reservoirs or that it was produced at localized sites and 

then diffused rapidly throughout the reservoirs.  The one exception to this was Marion, where we 
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collected additional samples in July and September directly from surface algal blooms in the 

riverine and transition zones.  These samples had geosmin concentrations that were higher than the 

concentrations at the three sampling sites on the same sample date (Figure 12).  It should also be 

noted that we might have missed surface blooms in some of the reservoirs that occurred between 

our sampling events.  For example, there was a bloom at Cheney that dissipated shortly before we 

sampled in July (J. Graham, USGS, personal communication).   

 Geosmin concentrations varied temporally within some of the reservoirs.  Big Hill 

experienced episodic increases in geosmin concentrations in the early summer and winter, while 

Clinton experienced its greatest increases in the winter.  Winter increases in geosmin concentrations 

have been observed in both of these reservoirs in the past (Sam Atherton, PWWSO#4, personal 

communication and Wang et al., 2005).  As mentioned above, Marion experienced episodic 

increases in geosmin concentrations in July and September.  In contrast, geosmin concentrations 

were around 10 ng/L throughout the study in Cheney, suggesting that the potential for taste and 

odor events was high throughout the summer and into the fall in this reservoir.  

Universal Models 

Universal reservoir models for predicting geosmin concentrations were developed using data 

combined from the four reservoirs.  A single-variable model explaining 36% of the variation in 

geosmin concentrations (Equation 1,Figure 14) and a three-variable model explaining 53% of the 

variation in geosmin concentrations (Equation 2) were developed for the reservoirs.  From an 

ecological perspective these models explained relatively high percentages of variation in geosmin 

concentrations considering that data was collected from multiple reservoirs, and multiple sampling 

sites and dates within each reservoir.  From a treatment perspective, however, these models may not 

provide enough explanatory power to make management decisions.  Instead, individual reservoir 

models, which tended to explain a greater percentage of the variation in geosmin concentrations 
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than the universal models, may be needed.  Alternatively, it is also possible that better predictive 

models could be developed for groups of reservoirs that exhibit similar characteristics such as size, 

depth, and trophic state; however, more data from a greater variety of reservoirs is needed to 

develop such reservoir type models.  

  One variable, PO4, was a significant predictor of geosmin concentrations in several of the 

models.  Specifically, geosmin concentrations tended to decrease as PO4 concentrations increased 

(e.g. Figure 14).  These results appear to contradict ecological theory as increases in dissolved 

nutrient concentrations often results in increases in algal biomass and presumably geosmin 

production.  However, there are several mechanisms that may help to explain this negative 

relationship between PO4 and geosmin.  First, it is possible that cyanobacteria actually depleted PO4 

concentrations as they increased in biomass (e.g. Wang et al., 1999) resulting in subsequent blooms 

and increases in geosmin concentrations.  Second, as phosphorus concentrations decreased, PO4 

may have become limiting.  Under P-limiting conditions, algal cells may have extra nitrogen that 

they can in turn use to produce N-rich geosmin (V.H. Smith, University of Kansas, personal 

communication).  Regardless of the mechanisms, it is important to note that PO4 was consistently an 

important predictor of geosmin concentrations and changes in PO4 concentrations may play an 

important role in early warning systems in drinking water reservoirs. 

Individual Reservoir Models 

Big Hill 

The models developed for Big Hill had greater predictive power (higher r2 values) than the 

models developed for the other three reservoirs.  As mentioned earlier, Big Hill generally had lower 

nutrient and chlorophyll a concentrations than the other reservoirs (Table 3).  Therefore, our results 

suggest that it may be more difficult to develop predictive models for eutrophic reservoirs than it is 

for mesotrophic reservoirs such as Big Hill.  Furthermore, our results suggest that Kansas reservoirs 
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with relatively low concentrations of nutrients and chlorophyll are also vulnerable to taste and odor 

events.   

In particular, the percent biovolume of Aphanizomenon was a very good predictor of 

geosmin concentrations in Big Hill (r2=0.87, Equation 3,Figure 15) suggesting that Aphanizomenon 

is the cause of taste and odor events in this reservoir.  Therefore, water treatment personnel could 

use changes in Aphanizomenon biovolume in Big Hill as an early warning indicator of taste and 

odor events.  Cyanobacterial communities in Kansas reservoirs tend to be dominated by only a few 

taxa that vary considerably in their morphological characteristics (F. deNoyelles, personal 

communication).  Water treatment personnel from Big Hill could learn to coarsely identify 

cyanobacteria and collect water samples at regular intervals to monitor changes in algal community 

dynamics.  Several treatment facilities including the cities of Tulsa, OK (Ray West, City of Tulsa, 

personal communication), and Springfield, MO (David Ballou, City of Springfield, personal 

communication) currently use similar procedures to monitor cyanobacteria as early warning 

indicators.  Conversely, fluorometers (Figure 13) could be used to monitor changes in phycocyanin 

concentrations (cyanobacterial pigments) over time (e.g., Izydorczyk et al., 2005; Gregor et al., 

2007).  However, it is important to note that fluorometers such as the ones used in this study 

provide relative phycocyanin concentrations and do not distinguish between cyanobacterial taxa.  

Therefore, more detailed algal community data would be needed to determine how relative changes 

in phycocyanin concentrations obtained from in-situ fluorometers correspond to actual changes in 

algal community dynamics and specific producers of taste and odor compounds. 

Clinton 

In addition to PO4 (see discussion above about the negative relationship between geosmin 

and PO4), Secchi Disk depth (water clarity) was an important individual predictor of geosmin 

concentrations in Clinton (r2=0.50: Equation 6, Figure 16).  At low Secchi Disk depths, observed 
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geosmin concentrations were both above and below human detection limits (5 ng/L); however, at 

Secchi Disk depths greater than 80 cm, geosmin concentrations were always above human detection 

limits (Figure 16).  Increased water clarity, which often results in greater light availability, has been 

shown to have positive effects on cyanobacterial production (e.g. Havens et al., 1998).  Secchi Disk 

depths are relatively easy to collect assuming that water treatment personnel can get directly on to a 

reservoir.  However, it is important to stress that low Secchi Disk depths (<80 cm) would have 

limited predictive power, while high Secchi Disk depths (>80 cm) may be a good indicator of 

conditions that are suitable for taste and odor events in the reservoir.   

Several variables were incorporated in the multiple-variable model for Clinton including 

total nitrogen, temperature, and total cyanobacterial biovolume (Equation 8).  Increases in total 

nitrogen concentrations often result in increases in cyanobacterial biovolume (Downing et al., 

1999).  Interestingly, there was a negative relationship between temperature and geosmin.  While 

temperature may not be the best variable to include in water quality variables because reservoirs can 

experience diel variation (Andy Ziegler, USGS, personal communication), we have included it the 

model because we believe that it reflects seasonal changes in temperature.  Taste and odor events 

commonly occur in the winter in Clinton when water temperatures are lower (Wang et al. 2005).  

Total cyanobacterial biovolume was also an important variable that could be used as an early 

warning indicator as described above for Aphanizomenon biomass in Big Hill.     

Cheney 

 While we were unable to develop models for predicting geosmin concentrations with the 

water quality data that we collected from Cheney, several previous studies have presented 

significant models for predicting geosmin in Cheney.  Smith et al. (2002) presented a one-variable 

model that explained 72% of the variation in geosmin concentrations: 

(12) Geosmin = -1.08 + 0.412(CHL), r2=0.72 
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where CHL is chlorophyll a.  In their study, Smith et al. (2002) used average water quality data that 

was collected from 6 reservoir sites over a period of 15 months.   Christensen et al. (2006) also 

developed a model with two variables that explained 71% of the variation in geosmin 

concentrations: 

(13) log(GEOS) = 7.23 - 1.06 log(TURB) +  0.0097(SPCON), r2=0.71 

where TURB is turbidity and SPCON is specific conductance.  A unique aspect of the model 

present by Christensen et al. (2002) is that it is based on real-time data that can be accessed from 

remote locations to predict taste and odor events.  It is important to point out that the models of 

Smith et al. (2002) and Christensen et al. (2006) identified different variables as significant 

predictors of geosmin concentrations for the same reservoir suggesting that relationships between 

geosmin and water quality variables can be highly variable over time within individual reservoirs.  

Therefore, multiple years of data is likely needed to incorporate longer temporal patterns in to more 

accurate predictive models. 

Gardner 

 Predictive models were not developed for Gardner because taste and odor events were not 

observed in the reservoir – geosmin concentrations only exceeded 5 ng/L in only one sample 

(Figure 12).  However, it is important to point out that Gardner is a eutrophic reservoir with average 

total phosphorus and total nitrogen concentrations of 78.8 µg/L and 800 µg/L respectively (Table 

3).  Gardner also had average chlorophyll concentrations that were greater than the average 

concentrations in all of the reservoirs except Cheney; however, these high levels of chlorophyll 

were not associated with the production of geosmin.  The lack of taste and odor events in Gardner, 

combined with the presence of taste and odor events in the mesotrophic Big Hill, suggest that 

trophic state alone is not a good indicator of taste and odor events in Kansas reservoirs.   

Marion 



 43

 Total cyanobacterial biovolume was a reasonably good predictor of geosmin concentrations 

in Marion (r2=0.33; Equation 9; Figure 17).  When total cyanobacterial biovolume was greater than 

1,000,000 µm3/mL, geosmin concentrations were always above the human detection limit .  

Therefore, high concentration of total cyanobacterial biovolume (threshold at 1,000,000 µm3/mL) 

may provide an indicator of taste and odor events in Marion.  At concentrations below this threshold 

geosmin concentrations were both above and below human detection limits.  Interestingly, Secchi 

Disk depth was also an important variable in the Marion multiple-variable model suggesting that 

water clarity may be an important ecological factor influencing taste and odor events (see 

discussion of Secchi Disk depth in the Clinton section).    

United States Army Corps of Engineers Dataset 

 It is important to note that when data collected from additional reservoirs was added to the 

models, their predictability decreased.  Specifically, with the USACE data included in the universal 

data set, the models were no longer significant.  Furthermore, we were unable to develop significant 

predictive models for the USACE data alone.  These results further highlight the difficulty in Figure 

17. 

Additional Taste and Odor Producers 

While cyanobacteria are most often associated with taste and odor events in drinking water 

reservoirs, there are also a number of additional microorganisms such as Actionomycetes that 

produce geosmin and potentially contribute to taste and odor events (e.g. Lanciotti et al., 2003; 

Nielsen et al., 2005).  For example, Mau et al. (2004) suggested that Actinomyctes were responsible 

for at least some taste and odor events in Lake Olathe, KS.  Because of their potential importance, 

Actinomycete data should be included in any additional research or attempt to develop predictive 

models in Kansas reservoirs to help determine what role they play in taste and odor events.   

Model Verification and Implementation 



 44

Although we were able to develop several significant models for predicting geosmin 

concentrations, it is important to stress that the models presented in this report have not been tested 

and their accuracy in predicting actual taste and odor events is unknown.  Furthermore, it is 

unknown how applicable these models are to additional reservoirs not used in the current study.  

Therefore, the accuracy of these models need to be tested in at least the four study reservoirs before 

they can be used or implemented in a second phase of this research.  Additional data collected 

during a Phase II could also be used to refine the models to increase their predictive power.   

Once the models are tested and refined they can be implemented, and several factors should 

be considered when implementing specific models.  First, the variables included in implemented 

models must be easy to collect in order to encourage use by treatment personnel.  Second, the data 

acquisition time must be rapid (1-5 days at the most) for the models to be effective at predicting 

taste and odor events in a time frame that allows for management decisions to be made.  Third, 

models should be selected that include variables that are relatively inexpensive to collect so that a 

number of samples can be collected throughout the year at regular intervals.  Reservoir specific 

research is needed to determine how often samples need to be collected so that they can be 

effectively used in predictive models.  Fourth, the model structure and data input process must be 

easy and user friendly for the models to be effectively incorporated into treatment schedules.  

Finally, it is unknown if conditions are similar between raw water samples obtained from treatment 

plants as the water begins treatment and samples obtained for the reservoir.  Since models have 

been developed using reservoir samples, additional research is needed to determine if models can be 

used on raw water samples as well.  

2. Watershed Models 
Introduction 

Watershed conditions can play an important role in determining water quality that in turn 

impacts the ecological health of ecosystems dependent upon that water.  It has been observed that 
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watersheds are large-scale systems that limit the dynamic processes of subsystems within them such 

as grasslands, forests, etc. (Kepner ,1995).  Furthermore, the amount and spatial arrangement of 

land cover types in the watershed are related to ecological processes and to the effect a specific 

stress may have on a resource within a region, such as fisheries health.  Thus, watershed 

characterization is an essential component for determining the status and trends in the condition of 

ecological resources (Norton and Slonecker 1990).  Previous work has demonstrated that water 

quality is influenced by watershed composition and pattern (Sponseller et al., 2001; Herlihy, 1998; 

Hunsaker et al., 1992; Hunsaker et al. 1995).  Watershed attributes have also been examined to 

determine their relative contribution to nonpoint source pollution (Whistler, 1996; Haith ,1976).  

Typically, these studies have been limited in scope to small and medium watersheds (<10,000 

hectares) and have utilized land use and land cover information from aerial photographs or satellite 

imagery.  Sponseller et al. (2001), Jones et al 2001) and Detenbeck et al. (2000) recognized and 

recommended that future watershed studies incorporate the unique ability of time series remotely 

sensed imagery to provide data on changes in vegetation structure, composition, and land surface 

condition. 

The normalized difference vegetation index (NDVI) is a well-established and commonly 

used vegetation index in studies utilizing remote sensing data because it is roughly correlated with 

green plant biomass and vegetation cover (Box et al., 1989; Tucker, 1979). The NDVI is based on 

the relative reflectance values in the red and near infrared (NIR) wavelengths:  NDVI = (NIR - 

Red)/(NIR + Red).  Jones et al. (1996) evaluated the potential of NDVI to assess watershed health 

and hypothesized it could indicate losses in productivity, increased erosion, and losses of the 

vegetative buffer capacity along riparian corridors.  They suggested examining NDVI patterns and 

change, as well as comparing observed versus expected NDVI based on soils, topography, 

vegetation and climate.  Whistler (1996) explored NDVI values derived from Landsat Multi-
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Spectral Scanner (MSS) imagery as a surrogate for biomass, and hypothesized that NDVI values 

would have stronger relationships with water chemistry parameters than with land cover proportions 

derived from the same imagery.  He found significant relationships between NDVI and selected 

water quality parameters that, in fact, were stronger than relationships to land use/land cover in 

most cases.  In an earlier study, the Kansas Biological Survey and EPA Region VII partnered to 

explore watershed-water quality relationships.  NDVI or VPMs were more highly correlated to the 

selected stream condition parameters than land use/land cover proportions.  A major conclusion 

derived from this work was that NDVI or VPMs better explain variation in water quality conditions 

than land use/land cover composition (Griffith et al., 2002; Martinko et al., 2000; Griffith, 2000; 

Whistler, 1996).  The purpose of this section of the study was to explore relationships between 

NDVI or VPMs and geosmin concentrations to determine if predictive watershed models could be 

developed for drinking water reservoirs.   

Method 

Water quality/taste-and-odor data 

Significant challenges to this element of the project were the limitations of the water quality 

datasets.  The ideal data set for developing relationships between seasonally-varying satellite-

derived measures of watershed conditions and reservoir water quality conditions would be weekly, 

biweekly, or even monthly measurements of water quality parameters for a suite of reservoirs.  This 

study sampled four reservoirs (Big Hill Reservoir, Marion Reservoir, Clinton Lake, and Cheney 

Reservoir) multiple times during the single project year (2006), and also acquired existing water 

quality data for multiple reservoirs in Kansas, Missouri, and Oklahoma.  As such, the available data 

set is incomplete spatially (insufficient number of reservoirs sampled), thematically (different water 

quality parameters collected for different reservoirs), and chronologically (few long-term/multi-year 

data sets exist). 
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 The most complete data set for this element was the geosmin database for Eucha Reservoir 

in Oklahoma, spanning one partial year (1999) and four complete years (2000-2003, inclusive).  

Spavinaw Reservoir also had a geosmin database for the same period, but Eucha Lake drains into 

Spavinaw, and thus the Eucha watershed shares much of the Spavinaw watershed.  The Eucha 

dataset contains geosmin and MIB levels (ng/L) sampled approximately biweekly during the period 

August 31, 1999 through December 31, 2003 (Figure 18).  Temporal sampling density was 

apparently increased during certain periods during the year.  Data were aggregated to monthly 

values to reduce these irregularities in sampling density, with a typical monthly value representing 

between 1 and 8 samples for that month . 
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Figure 18.  Geosmin concentrations for Eucha Reservoir, Oklahoma, during 1999-2003. 
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Table 4.  Geosmin and MIB data from Eucha Reservoir, Oklahoma, during 1999-2003 

Sampling 
Date 

Geosmin 
(ng/L) 

MIB 
(ng/L) 

 Sampling 
Date 

Geosmin 
(ng/L) 

MIB 
(ng/L) 

Aug-99 4.50 0.00 Jan-02 179.75 2.11 
Oct-99 0.00 0.00 Feb-02 183.26 1.08 
Dec-99 0.00 0.00 Mar-02 27.65 0.92 
Jan-00 19.00 0.00 Apr-02 4.08 1.18 
Feb-00 44.80 0.00 May-02 3.09 1.11 
Mar-00 57.75 0.00 Jun-02 13.18 4.45 
Apr-00 25.40 0.45 Jul-02 10.72 4.68 
May-00 13.26 0.00 Aug-02 12.17 6.71 
Jun-00 9.50 2.48 Sep-02 12.26 17.75 
Jul-00 3.13 3.28 Oct-02 9.30 12.30 

Aug-00 3.33 5.15 Nov-02 15.56 4.17 
Sep-00 1.78 3.23 Dec-02 66.55 2.20 
Oct-00 6.48 14.18 Jan-03 50.92 1.38 
Nov-00 7.24 7.16 Feb-03 28.37 1.47 
Dec-00 21.00 1.90 Mar-03 5.44 0.53 
Jan-01 26.00 2.02 Apr-03 2.10 1.51 
Feb-01 21.68 1.74 May-03 3.45 1.37 
Mar-01 6.80 1.35 Jun-03 6.57 0.77 
Apr-01 4.33 0.84 Jul-03 22.47 4.99 
May-01 18.20 1.84 Aug-03 6.54 6.03 
Jun-01 41.35 4.21 Sep-03 4.30 27.00 
Jul-01 5.87 2.30 Oct-03 8.17 44.37 

Aug-01 8.73 4.02 Nov-03 7.76 23.44 
Sep-01 12.16 15.63 Dec-03 29.65 3.74 
Oct-01 28.70 10.04    
Nov-01 55.47 5.37    
Dec-01 81.35 1.88    

 
 
Satellite data 

 NOAA-AVHRR NDVI biweekly composite images for 1989-2006 have been acquired on 

an ongoing basis by KARS from the USGS EROS Data Center in Sioux Falls, SD.  Each biweekly 

composite consists of the maximum NDVI value within each two-week period for each pixel 

(Eidenshink, 1992), for a total of 26 images per year.  Vegetation index data are rescaled by EROS 

during processing from a range of -1.0 to +1.0, to 0 to 200.  Values less than 100 typically represent 

snow, ice, water, and other non-vegetated earth surfaces.  Vegetation phenology metrics described 
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by Reed et al. (1994) were generated from the NDVI time series for each year are included in 

Figure 19.  

Results 

 Watershed Boundary Dataset (WBD) hydrologic unit geospatial data in the form of 

shapefiles were downloaded off the USDA Geospatial Data Gateway.  This dataset at 1:24,000 

scale is an expanded version of the hydrologic units created in the mid-1970's by the U.S. 

Geological Survey under the sponsorship of the Water Resources Council.  The WBD is a complete 

set of hydrologic units from new watershed and sub-watersheds less than 10,000 acres to entire 

river systems draining large hydrologic unit regions, all attributed by a standard nomenclature.  

Polygons for the Eucha watershed were extracted from the more extensive WBD dataset and 

dissolved on the HUC-10 code to create a watershed boundary mask.  Mean, standard deviation, 

minimum, and maximum values for all VPM metrics were computed using all pixels falling within 

the Eucha watershed boundary (Figure 19).   

 VPM and geosmin data were analyzed using SPSS.  The low number of samples (n=5) 

substantially limited statistical analysis.  With one exception, no significant correlations were found 

between VPM watershed metrics and geosmin levels for Eucha Lake.  One statistically significant 

negative correlation was observed between December geosmin levels and the mean watershed 

rescaled maximum greenness (NDVI).  A regression equation between the two parameters was 

developed with an r2 value of 0.97 (Figure 20).   
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Brown Days

 

Metric Ecological Function or Process Represented 
Date of onset of greenness Beginning of photosynthetic activity 
Date of end of greenness End of photosynthetic activity 
Duration of greenness Length of photosynthetic activity 
Date of maximum greenness Time when photosynthesis is at maximum 
Growing days Number of days from onset of greenness to maximum NDVI 
Growing season Number of days from onset to end of greenness 
Value of onset of greenness Level of photosynthesis at start 
Value of end of greenness Level of photosynthesis at end 
Value of maximum NDVI Level of photosynthesis at maximum 
Range of NDVI Range of measurable photosynthesis 
Accumulated NDVI Net primary production 
Rate of green up Acceleration of increasing photosynthesis 
Rate of senescence Acceleration of decreasing photosynthesis 
Mean daily NDVI Mean daily photosynthesis activity 
 

Figure 19.  Vegetation phenology metrics described by Reed et al. (1994) that were generated from 
the NDVI time series for each year are included in the data set from Eucha Reservoir. 
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Table 5.  Vegetation phenological metrics data for the Eucha Watershed, 1998-2003. 

 
  1998 1999 2000 2001 2002 2003

min 673.00 791.00 881.00 727.00 792.00 1103.00
max 1360.00 1417.00 1403.00 1365.00 1163.00 1363.00
mean 1160.24 1256.41 1149.45 1158.06 1025.01 1252.60

Accumulated (summed) 
growing season NDVI 

s.d. 129.78 105.22 104.41 80.64 71.35 49.32
min 158.60 159.05 158.42 156.83 155.75 159.16
max 175.69 174.94 176.20 177.06 175.80 177.12
mean 166.72 165.83 166.90 165.53 164.78 167.92

Average growing season 
NDVI 

s.d. 3.14 2.85 2.94 3.71 3.56 3.25
min 0.27 0.50 1.00 0.36 1.78 0.08
max 8.00 4.50 5.60 8.33 14.50 22.00
mean 1.96 2.25 2.58 2.22 2.88 5.74

Rate of senescence 

s.d. 1.31 0.69 0.74 1.35 1.01 3.46
min 145.00 141.00 141.00 144.00 136.00 142.00
max 173.00 174.00 168.00 169.00 160.00 174.00
mean 159.94 153.52 153.12 157.77 146.78 153.94

NDVI value at period of 
dormancy onset 

s.d. 6.09 6.77 6.42 5.66 4.55 4.90
min 15.00 18.00 17.00 16.00 18.00 21.00
max 24.00 24.00 24.00 23.00 24.00 23.00
mean 22.30 22.38 21.20 22.49 22.18 22.97

Dormancy onset period 

s.d. 1.96 1.41 1.71 0.71 1.13 0.23
min 1.31 2.73 2.09 2.13 2.58 1.80
max 17.00 16.00 13.00 18.67 32.00 13.50
mean 5.63 5.95 5.65 6.21 8.60 4.36

Rate of greenup 

s.d. 2.13 2.57 2.21 2.36 3.39 2.24
min 8.00 9.00 9.00 9.00 9.00 8.00
max 21.00 14.00 16.00 21.00 20.00 22.00
mean 11.57 10.34 11.05 12.75 11.13 16.37

Date of maximum greenup 
(period number) 

s.d. 2.37 1.13 1.17 2.37 1.41 4.26
min 168.00 170.00 171.00 168.00 166.00 171.00
max 186.00 186.00 186.00 189.00 185.00 186.00
mean 178.25 180.25 179.16 177.02 177.54 178.56

NDVI value at maximum 
greenup 

s.d. 3.57 2.75 3.07 4.20 2.87 3.05
min 4.00 3.00 3.00 4.00 6.00 4.00
max 8.00 8.00 8.00 7.00 8.00 7.00
mean 5.90 4.24 4.98 5.80 7.33 5.50

Date of greenup onset 
(period number) 

s.d. 0.96 1.56 1.50 0.95 0.77 0.85
min 139.00 135.00 135.00 123.00 133.00 130.00
max 158.00 158.00 157.00 146.00 160.00 150.00
mean 149.77 147.52 148.08 138.75 147.73 140.81

NDVI value at onset of 
greenup 

s.d. 3.97 4.76 3.68 3.56 5.41 3.84
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Figure 20.  Significant regression relationship between December geosmin concentration and mean 
watershed the mean watershed rescaled maximum greenness (NDVI) for Eucha Reservoir, 
Oklahoma, during 1999-2003. 

Discussion and Conclusions 

 Is the relationship between December geosmin concentrations and mean watershed 

maximum greenness a statistical artifact or an actual environmental relationship?  The low number 

of samples (n=5) argues on the side of statistical artifact, a random relationship purely by chance.   

Acknowledging this, and setting this aside for the moment for the sake of argument, if we presume 

the possibility of the validity of the relationship, are there other data sets that might also show 

similar trends that echo the VPM-geosmin relationship for this watershed?  Since vegetation 

greenness can be closely related to available moisture in a watershed, precipitation records might 

show similar trends.  Annual precipitation data for the station closest to the Eucha watershed (Tulsa, 

OK) were obtained from the National Weather Service.  Plotted with the dates of each geosmin-

VPM observation, annual precipitation shows similar trends.  Years of high annual precipitation 
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(1999, 2000, 2003) were years of high mean watershed maximum greenness and low geosmin, and 

conversely (Figure 21).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21.  Significant regression relationship between December geosmin concentration and mean 
watershed the mean watershed rescaled maximum greenness (NDVI) for Eucha Reservoir, 
Oklahoma, during 1999-2003.  Annual precipitation data is included. 

   

 What is “mean maximum watershed greenness,” and what is it telling us about conditions 

within the watershed that appear, at least for the sake of argument, to be strongly inversely related 

to December geosmin concentrations?  Translated, the mean maximum watershed greenness metric 

represents the average NDVI value recorded across a watershed during the biweekly period of peak 

greenness during a growing season (Figure 22).  If vegetation conditions across a watershed are 

excellent, the NDVI value will be high.  If conditions are uniformly poor (perhaps during a drought 

year), the value will be low.  Since the metric averages all the NDVI values across the watershed 

during this peak period, local high or low variations are damped out and the metric is a measure of 

the overall greenness during the peak. 
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Figure 22.  Watershed maximum greenness values for the Eucha Reservoir watershed in years of 
low (2000, 2003) and high (2001, 2002) geosmin years. 
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3.  MODIS Models 

Introduction 

Our objective in this section was to use Moderate-resolution Imaging Spectroradiometer 

(MODIS) data to document changes in water quality from ten  KS reservoirs.  Based on past 

experience with using satellite imagery to monitor vegetation greenness and changes in both 

terrestrial and aquatic conditions, we hypothesized that 16-day composited MODIS Normalized 

Difference Vegetation Index (NDVI) data might provide an ongoing indication of possible algal 

blooms within a reservoir. 

Methods 

Reservoir Selection 

Ten reservoirs were selected for this element of the project (Table 6).  Big Hill Lake  and 

Gardner Lake were not used, even though they were sampled as part of other project elements, on 

the basis of size.  At the 250-meter spatial resolution of the MODIS NDVI, small lakes do not have 

sufficient area to provide “water-only” pixels free of influence from non-water areas. 

Table 6.  Reservoirs used for MODIS project element. 

 

NAME Area, square kilometers 
Cheney Lake 38.99 
Clinton Lake 30.63 
El Dorado Lake 30.76 
Hillsdale Lake 19.73 
John Redmond 30.13 
Kanopolis Lake 15.29 
Marion Lake 24.88 
Perry Lake 47.22 
Pomona Reservoir 16.87 
Tuttle Creek Reservoir 59.55 
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GIS Data Preprocessing 

A polygon shapefile of federal reservoirs was obtained from the Kansas Water Office.  

Polygon outlines of the ten federal reservoirs listed above were exported to a separate file.  A buffer 

operation was then used to buffer into each lake polygon 250 meters to create a cropped lake 

perimeter polygon.  This buffer operation was performed to ensure that water-only pixels were 

selected for each lake in the following processes.  The polygon shapefile was then converted to 250-

meter raster format to create a mask file for application to the MODIS 2006 NDVI composite file 

(described below). 

MODIS Data 

The MODIS is a payload scientific instrument launched into Earth orbit by NASA in 1999 

on board the Terra (EOS AM) Satellite, and in 2002 on board the Aqua (EOS PM) satellite.  

Together the instruments image the entire Earth every 1 to 2 days.  Terra's orbit around the Earth is 

timed so that it passes from north to south across the equator in the morning, while Aqua passes 

south to north over the equator in the afternoon.  The instruments capture data in 36 spectral bands 

ranging in wavelength from 0.4 µm to 14.4 µm and at varying spatial resolutions (2 bands at 250 m, 

5 bands at 500 m and 29 bands at 1 km).  Red and NIR bands are only ones available at 250m, so 

that NDVI is available at 250m.  MODIS NDVI from either Terra or Aqua are available as time 

series, in particular non-overlapping 16-day composite tiles (22 composites in 2006).   

MODIS NDVI 16-day composites for 2006 were obtained from the EROS Data Center.  The 

MODIS acquires images on a daily basis, but cloud cover often obscures the land surface.  In order 

to produce a cloud-free image of vegetation conditions during a 16-day period, a set of sixteen daily 

images is used to create a single 16-day composite image.  Each NDVI composite consists of the 

maximum NDVI value within a defined 16-day period for each pixel (Table 7). 
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Table 7.  MODIS NDVI composite periods. 

Period Date Range Period Date Range 
1 01 Jan  2006 - 16 Jan  2006 12 26 Jun  2006 - 11 Jul  2006 
2 17 Jan  2006 - 01 Feb  2006 13 12 Jul  2006 - 27 Jul  2006 
3 02 Feb  2006 - 17 Feb  2006 14 28 Jul  2006 - 12 Aug  2006 
4 18 Feb  2006 - 05 Mar  2006 15 13 Aug  2006 - 28 Aug  2006 
5 06 Mar  2006 - 21 Mar  2006 16 29 Aug  2006 - 13 Sep  2006 
6 22 Mar  2006 - 06 Apr  2006 17 14 Sep  2006 - 29 Sep  2006 
7 07 Apr  2006 - 22 Apr  2006 18 30 Sep  2006 - 15 Oct  2006 
8 23 Apr  2006 - 08 May  2006 19 16 Oct  2006 - 31 Oct  2006 
9 09 May  2006 - 24 May  2006 20 01 Nov  2006 - 16 Nov  2006 
10 25 May  2006 - 09 Jun  2006 21 17 Nov  2006 - 02 Dec  2006 
11 10 Jun  2006 - 25 Jun  2006 22 03 Dec  2006 - 18 Dec  2006 

 

Data Analysis and Display 

Because water quality data were not available for all ten reservoirs, particularly data on 

green and blue-green algae counts, a more qualitative representation of satellite remotely sensed 

water conditions was performed.  Each of the 22 dates of NDVI imagery were density-sliced and 

color-coded according to a bipolar color progression typically used for depiction of NDVI values. 

Results and Conclusion 

In all of the following images, low NDVI values that result from low water levels, bare soil, 

or clear water appear in tones of brown ranging to yellow.  Higher NDVI values, which indicate 

increasing vegetation – usually interpreted as some form of algae, but can also include floating 

aquatic plants and near-surface submerged aquatic plants – are displayed in tones ranging from 

green up to dark blue (maximum NDVI, Figure 23 - Figure 25). 
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Figure 23.  NDVI imagery for study lakes. 
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Figure 23.  Continued. 
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Figure 24.  Kanopolis Lake in 2006 suffered from severe low water levels in 2006, resulting in the 
exposure of mud flats in the north end of the lake.  As a result, the high NDVI values indicated for 
the north end of the lake result not from algae blooms, but from weedy vegetation growing on the 
exposed lake bed.  Photos by Mike Rodriquez, Lindsborg, Kansas. 

 

 

Figure 25.  NDVI imagery for study lakes. 
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Figure 25. Continued. 
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Figure 25. Continued. 
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Figure 25. Continued. 
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