Wadeable Streams in Kansas, 2000-2001:
 Chemistry, Physical Habitat, and Fish Communities

Kansas Biological Survey Report No. 138
26 July 2006
by

Elizabeth F. Smith, Donald G. Huggins, and Debra S. Baker

Central Plains Center for BioAssessment
Kansas Biological Survey
University of Kansas

Table of Contents

Tables 3
Figures 3
Appendices 5
Acknowledgements 6
Introduction 7
Background 7
Materials \& Methods 7
Data collection 7
General considerations 7
Site selection 8
Field data collection and sample collection and processing 9
Data entry 9
Forthcoming data 10
Data quality review, supplementation, and analysis 10
Design File 10
Data extraction 10
Chemistry 10
Physical habitat 11
Fish Community 11
All-data file 12
Data presentation 12
Results 12
General Considerations 12
Water, Sediment, and Fish Tissue Chemistry 13
Physical Parameters and Water Chemistry 13
Sediment Chemistry 15
Fish Tissue Chemistry 17
Physical Habitat 18
Channel and reach morphology 18
Substrate. 21
Streambed stability 23
Riparian Cover 25
Riparian Disturbance 27
Fish Cover 28
Large Woody Debris 29
Fish Communities 31
Relationships among Fish and Other Factors 32
Substrate Type 33
Channel Morphology 35
Temporal comparison of 1994-95 and 2000-01 data 36
Conclusion 40

Tables

Table 1. Fish cover descriptive statistics. 29
Table 2. Physical habitat variables that were significantly ($\mathrm{p}<0.05$) and highly (Pearson's $\mathrm{r}>|0.50|)$ correlated. * denotes normal distribution. See Appendix O for codes. 33
Table 3. Temporal comparisons of fish metrics and IBIs, showing abbreviated variable name, variable name, data normality, significance value (p value), and changes from 1994-95 (y1) to 2000-01 (y2), and the mean and standard deviation (std. dev.) for both the y1 data and y2 data. The paired t-test was used to examine normal data, while the Wilcoxon signed-rank test was used to examine non-normal data. See Appendix O. for more completely spelled out variable names. 37
Figures
Figure 1. CDF of mean flow based on random sites, with reference-site median superimposed for comparison. Note logarithmic scale. 13
Figure 2. CDF of dissolved oxygen based on random sites, with reference-site median superimposed for comparison. The ALU criterion for DO is $5.0 \mathrm{mg} / \mathrm{L}$. 14
Figure 3. CDF of total lead in water based on random sites, with reference-site median superimposed for comparison. Lead was detected at all random sites. The ALU criterion for lead is hardness-dependent. No sites failed the acute ALU criterion for lead, but if measured levels were persistent, about 17% of sites would fail the chronic ALU criterion. 15
Figure 4. CDF of total lead in sediment based on random sites, with reference-site median superimposed for comparison. Values shown represent both detected levels and reporting levels for nondetects; detect $=20527 \mathrm{~km} /$ Nondetect $=802 \mathrm{~km}$. 16
Figure 5. CDF of total mercury in sediment based on random sites, with reference-site median superimposed for comparison. Lead was not detected at all sites. Detect $=10071 \mathrm{~km} /$ Nondetect $=11258 \mathrm{~km}$ 16
Figure 6. CDF of total mercury in fish tissue based on random sites, with reference-site median superimposed for comparison. Fish tissue samples were collected at only about half of the sites, so stream km may not be a good representation of total Kansas stream km in the sampling frame. Mercury was not detected at all sites. Detect $=9493 \mathrm{~km} /$ Nondetect $=$ 945 km 17
Figure 7. CDF of mean wetted width based on random sites, with reference-site median superimposed for comparison. 18
Figure 8. CDF of Thalweg mean depth based on random sites, with reference site median superimposed for comparison. 19
Figure 9. CDF of mean channel incision height based on random sites, with reference site median superimposed for comparison. 19
Figure 10. CDF of mean slope based on random sites, with reference site median superimposed for comparison. 20
Figure 11. CDF of standard deviation of Thalweg depth based on random sites, with reference site median superimposed for comparison. 20
Figure 12. CDF of mean residual depth based on random sites, with reference site median superimposed for comparison. 21
Figure 13. CDF of mean embeddedness based on random sites, with reference site median superimposed for comparison.21
Figure 14. CDF of substrate composition based on random sites, with reference site median superimposed for comparison 22
Figure 15. CDF of mean substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as $\log 10(\mathrm{~mm})$, calculated from class- diameter medians) 22
Figure 16. CDF of standard deviation of mean substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as $\log 10(\mathrm{~mm})$, calculated from class-diameter medians). 23
Figure 17. CDF of estimated erodible substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as Log $10(\mathrm{~mm})$ 24
Figure 18. CDF relative bed stability based on random sites, with reference site median superimposed for comparison. Values below zero represent erosion; values above zero represent deposition. (Values reported as Log10.) 24
Figure 19. CDF of mean canopy density at mid-channel (measured by densiometer), as based on random sites, with reference site median superimposed for comparison. 25
Figure 20. CDF of three-layer riparian coverage based on random sites, with reference site median superimposed for comparison. 26
Figure 21. CDF of percent cover provided by canopy layer ($>5 \mathrm{~m}$), as based on random sites,with reference site median superimposed for comparison. Outlier values of 0.53-0.76(representing less than 3% of stream km) not shown.26
Figure 22. CDF of non-agricultural riparian disturbance (sum of nine types) as based on randomsites, with reference site median superimposed for comparison. Maximum possible score is$1.5 \times 9=13.5$27
Figure 23. CDF of agricultural-type riparian disturbance (two types), as based on random sites,with reference site median superimposed for comparison. Maximum possible score is 1.5 x$2=3$28
Figure 24. CDF of mean residual depth based on random sites, with reference site median superimposed for comparison. Outlier values of $0.94-1.1$ (representing less than 2% of km) not shown. 29
Figure 25. CDF of large woody debris volume, in the bankfull channel, as based on random sites. Outlier values of 0.08 and 0.14 (representing less than 3% of km) not shown. Reference site median value (based on $30 / 30$ sites) $=0$. 30
Figure 26. CDF of large woody debris pieces, in or above the bankfull channel, based on random sites, with reference site median superimposed for comparison. Outlier values of 60.0-87.4 (representing less than 2% of km) not shown 30
Figure 27. CDF of the Index of Biotic Integrity (IBI), based on random sites, with reference sitemedian superimposed for comparison. The IBI is an 8-metric index based on fishcommunity data.32
Figure 28. Matrix of the fish metrics of percent insectivores (insect) and percent herbivores +microphagious omnivores (herbiv) against the physical habitat variables of percent sand andfines (PCT_SAFN), percent fine gravel (PCT_SFGF), and percent coarse gravel(PCT_BIGR). From the 2000-01 Kansas REMAP dataset. Regression line in black, Loess(80%) smoothing curve in red.35

Figure 29. Matrix of the fish metrics of proportion of sensitive individuals (psen) and proportion of tolerant individuals (ptole) against the physical habitat variables of bankfull width (XBKF_W), bed stability (lrbs_bw5), embeddedness (XEMBED), and proximity of agricultural riparian (wl_hag). From the 2000-01 Kansas REMAP dataset. Regression line in black, Loess (80%) smoothing curve in red.
Figure 30. Plots for reproductive strategy score (repro) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01
Figure 31. Plots for \% tolerant spawners score (tolrepr) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were normal. Regression line in black. The extreme scatter indicates no difference between 1994-95 and 2000-01 values
Figure 32. Plots for IBI1 for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01. All IBIs followed these trends, and were significantly different ($\mathrm{p}=0.00$) between year groups. Circled are sites KES008, KES046, and KES053 which greatly increased from 1994-95 to 2000-01
Figure 33. Plots for stream flow (CFS) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01. The four sites with flow >95 CFS do not appear in the scatter plot.

Appendices

Appendix A.1. Map of sites sampled and attempted. A-1
Appendix A.2. Locality of reference sites sampled and attempted. A-3
Appendix A.3. Locality of random sites sampled and attempted. A-5
Appendix A.4. Locality of sites not sampled. A-9
Appendix A.6. Status of random sites sampled and attempted. A-12
Appendix A.7. Status of sites not sampled. A-16
Appendix A.8. Sites from which fish samples were collected. A-17
Appendix B. Physical and chemical parameters measured/analyzed. B-1
Appendix C. Water, sediment, and fish tissue criteria, guidelines, and screening values. C-1
Appendix D. Description, development, and modifications of the fish IBI. D-1
Appendix E. Water chemistry, sediment chemistry, and fish tissue chemistry summary from reference sites E-1
Appendix F. Analytes in water: physical parameters, general chemistry, metals, and biocides.F-1Appendix G. Analytes in sediment: physical parameters, general chemistry, metals, andbiocides.G-1
Appendix H. Analytes in fish tissue: metals and biocides. H-1
Appendix I. Water, sediment, and tissue chemistry compared to criteria, benchmarks, and guidelines. I-1
Appendix J. Physical habitat characteristics of reference sites J-1
Appendix K. Physical habitat characteristics K-1
Appendix L. Fish species collected from 30 reference sites and 55 random sites L-1
Appendix M. Fish community characteristics of reference sites. M-1
Appendix N. Fish community metrics and indices of biotic integrity. $\mathrm{N}-1$
Appendix O. Measures examined for correlations. O-1

Acknowledgements

For answering questions about data and metadata, we are grateful to Ann Jacobs, Lyle Cowles, Harry Kimball, and the late Bob Barber of EPA Region VII; Kristen Hase of KDWP; and Geff Luttrell of the KU Natural History Museum. For help with data processing methodology and analysis, we are grateful to David Peck at EPA lab in Corvallis, Oregon, and Ken Bazata at Nebraska Dept. of Environmental Quality.

Introduction

Background

Water resource monitoring is often focused on exceptional sites, that is, sites of noticeably high or low quality. There may be both intentional and unintentional reasons or causes for the selection of sampling sites. One sound reason for this sampling bias is the high social and scientific priority that our society places on preservation of sites with the best conditions and remediation of those with the worst. The emphasis on impaired water monitoring was codified in the Clean Water Act requirement for 303(d) listings. More recently, relatively undisturbed "reference quality" sites have received attention for their role in setting expectations for biological criteria.

The Clean Water Act antidegradation mandate applies, however, not only to exceptional sites but to all waters. Reporting on the overall condition of aquatic resources as mandated by provision 305(b) has been supported by maintenance of a network of long-term monitoring sites. Longterm monitoring of repeat sites is a good tool for detecting trends, but may not be the best estimate of overall status. More importantly, there is no guarantee that hand-picked sites are representative of overall resource quality. For example, easy-access sites may be of relatively low quality due to their proximity to human influence, whereas resource scientists' "preferred" sites may be of unusually high quality.

Unbiased sampling can be achieved either via exhaustive census or true random sampling. Random but "even" sampling of an unevenly distributed resource presents a statistical challenge. The probabilistic site sampling methodology associated with EPA's EMAP (Environmental Monitoring and Assessment Program) project was developed as an answer to this challenge. Sites are selected from a representation of the known extent of the target population and weighted based on their proportion in the population; the sampling algorithm is spatially balanced but random. Results can be extrapolated to the target population with known confidence. In the case of this report, measurements are extrapolated to perennial wadeable stream miles in the state of Kansas.

The randomly selected sites in this study were established as part of a larger project begun in 1994-95 to evaluate the health of fisheries in USEPA Region VII. This dataset also includes a number of putative reference sites, handpicked by regional resource scientists.

Materials \& Methods

Data collection

General considerations

The findings reported here are from data collected by Kansas Department of Wildlife and Parks as part of the Regional EMAP (R-EMAP) wadeable streams project for Kansas, 2000-01 (Kansas Biological Survey, Kansas Department of Wildlife and Parks et al. September 1999). Many of
the sites selected and all of the sampling methodologies are a functional follow-up to the Kansas portion of the USEPA Region VII three-state R-EMAP study of 1994-95.

Field crews of the Kansas Department of Wildlife and Parks (KDWP) collected data and samples. Chemistry specimens were processed at the USEPA Region VII chemistry laboratory in Kansas City, KS (Harry Kimball, supervisor). Fish vouchers were identified by Geff Luttrell in the Ichthyology Division of the University of Kansas Natural History Museum and Biodiversity Research Center (KUNHM-BRC). Data were assembled and analyzed at the Central Plains Center for BioAssessment (CPCB), a research unit of the Kansas Biological Survey (KBS). Analysis and reporting work done at CPCB were supported by an extension on grant USEPA X-9871820-0.

Site selection

Among perennial wadeable streams in Kansas, two categories of sites were selected for sampling: random and reference. For a map and list of sites, see Appendix A.

The random sites were resamples from the 1994-95 R-EMAP randomly selected sites for Kansas. The site list was originally generated by EPA Corvallis as part of a regional fisheries health project (USEPA Region VII May 1994). The sampling frame was restricted to stream segments of fourth or lower order from the RF3 stream network database. Sites were selected using a spatially random sampling regime. Sites were stratified by state but not with respect to ecoregion or stream order. For the original project there were 71 sites originally selected. Two of these (KES022, North Fork Little Sugar Creek, Linn Co., and KES037, Mill Creek, Wabaunsee Co.) were sampled at incorrect coordinates due to field error, so they were removed from the "random" population and added to the "reference" population by default. The other 69 were sampled as random sites in 1994-95. Based on their representativeness in the population, these sites represent a total stream network length of 26445.18 km . Sampling was attempted for these same sites in 2000-01.

Of the 69 random sites attempted for 2000-01, 12 were not sampled. The 12 non-sampled sites represent a stream network length of 4643.75 km . Access was denied at seven (representing 2691.76 km), and five were designated nonsampleable by field crews because they were either dry or nonwadeable, and thus did not meet physical criteria for sampling (representing 1951.99 km). The other 57 random sites were at least partially wadeable and were sampled for at least one set of parameters (physical habitat, chemistry, and/or fish community). These represent a total stream network length of 21801.43 km .

Most of the 33 putative reference sites were selected by KDHE, KDWP, and CPCB scientists and other Kansas colleagues, though the two that were added secondarily were resampled in 2000-01 (see above). Reference sites were selected by best professional judgment, based on available data regarding the integrity of biological communities, physical habitat, water chemistry, and watershed conditions. Of these sites, 32 were sampled, and one was designated nonsampleable (dry). Eleven of the 33 reference sites (including the one dry) had been sampled in 1994-95; 22 were added as new sites for the 2000-01 sampling effort.

Field data collection and sample collection and processing

Data and sample collection methodologies followed the 1994-95 Region VII project QAPP (USEPA Region VII May 1994) and standard EMAP guidelines (USEPA Environmental Monitoring and Assessment Program 1999); equipment and procedural particulars are detailed in the Kansas summary reports for that project (Waters 1997a; Waters 1997b).

A sample reach was laid out upstream and downstream of each x-site (the site's latitude and longitude). Standard reach length was $40 \times$ stream width, but no less than 150 m and no greater than 300 m . Eleven evenly-spaced transects were marked along the reach. Personnel then collected data and samples. Chemical and physical data measured on-site at the start of sampling included temperature, dissolved oxygen, pH , turbidity, and conductivity. Water samples were collected at this time. Sediment samples were collected during macroinvertebrate sampling (not discussed); fish tissue samples were collected during fish sampling; discharge was measured at one point after all other sampling was complete.

Physical habitat data were collected according to Lazorchek et al. (1998). Channel measurements made at each transect included a depth-substrate-embeddedness profile, as well as wetted width, bankfull width, bankfull height, bank angle, undercut, incision, and densiometer canopy cover. Between transects, crews measured water slope and compass bearing and made 10 or 15 evenly spaced thalweg measurements, recording depth, presence of fine sediment, and presence of side channels. Crews scored fish cover and tallied large woody debris. Along the banks, crews scored human disturbance (roads, row crops, pipes, etc.) and estimated riparian vegetation cover in three layers (canopy, mid-layer, and ground cover).

Fish were collected by electrofishing and/or seining. Some fish (especially T\&E species or large individuals of easily identified sport species) were identified and released in the field; their identification, count, and size data were recorded on field forms. Other fish were collected and preserved as identification vouchers. A few fishes were retained for tissue sampling.

Water, fish tissue, and sediment samples were shipped to the EPA Region VII chemistry laboratory in Kansas City, Kansas, which processed the samples. Fish voucher specimens were sent to the KU Museum of Natural History for identification.

Data entry

Field-form data relating to locality, on-site chemistry, and physical habitat were hand-entered into KDWP's Stream Assessment Database (Microsoft Access) by KDWP personnel. Fish voucher identification data were sent to KDWP as electronic files from KU Natural History Museum and then incorporated into the same database. In July 2004, this database was released to the Central Plains Center for BioAssessment (CPCB), a research unit of the Kansas Biological Survey (KBS).

Chemistry data were quality checked and reviewed internally at EPA Region VII and then released to CPCB as electronic spreadsheet files. Conductivity measurements were discarded
after questions about equipment precision. Analytes measured included nutrients, metals, and pesticides in water, sediment, and fish tissue; for the complete list see Appendix B.

Forthcoming data

In the near future, additional data will be available that relate to these sites and collection events. Personnel from the Kansas Applied Remote Sensing program at the KBS are delineating watersheds and watershed areas for these sites using digital elevation models.
Macroinvertebrates were also collected at most of these sites, and site/species/count data are available from CPCB or KDWP.

Data quality review, supplementation, and analysis

Design File

A design file (a site list master file) was constructed using KDWP site names, locations, sampling success information, reach-level data, and site weightings for randomly selected sites (which were taken from the 1994-95 dataset). Geospatial map data for Omernik Level 3 Ecoregions and HUC-8 units (current as of May 2005) were acquired from Kansas Applied Remote Sensing division of Kansas Biological Survey, matched to site coordinates in ESRI ArcMap 9.0, and appended to the design file.

Data extraction

Raw physical habitat data, on-site chemistry data, and fish data were extracted from the April 2004 version of the KDWP Microsoft Access master database, "Stream Assessment Program Database," restructured and reformatted in MS Excel, consolidated as necessary, and imported into SAS datasets. Imported files were checked against original files for accuracy.

Chemistry

Verified and validated chemistry data (in the form of MS Excel files) were received from USEPA Region VII chemistry laboratory. Some data were flagged. According to the laboratory's data quality manual (Kimball 2003) "The reporting limit for an analyte is the concentration represented by the lowest level in the initial calibration curve where the analyte is detected, unless otherwise specified in the RLAB Method. This concentration is typically approximately three times the method detection limit. The reporting limit is reported accompanied with a Detection ID of "U" when the analyte in question is not detected in the sample or is detected at a concentration less than the reporting limit." Some analytes in water (e.g., metals) were assessed for both total and dissolved amounts (separate samples) and reported in weight per volume. Although standards can be adjusted for application to either total or dissolved, only total amounts are compared to standards. This decision was made in part because "dissolved" (field-filtered) samples were not available for 17 sites, whereas "total" (unfiltered) samples were available for all but 2 sites. Analytes in soil are reported in weight per dry weight of soil. Analytes in fish tissue are reported in wet weight of whole fish tissue. EMAP
methodology requires no special chemistry data processing. The chemistry files were restructured to one record per site and imported into SAS datasets.

New columns were added to calculate variable ALU criteria for each site (ammonia and hardness-dependent metals) and score pass/fail status for all analytes for which there are Kansas Water Quality Criteria (Kansas Department of Health and Environment Bureau of Water 2004; USEPA Office of Water 2004). Sediment quality green-area guidelines (consensus-based Probable Effect Concentrations) were extracted from the peer reviewed document, "Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines" (Ingersoll, MacDonald et al. 2000). Fish tissue chemical limits for human health were taken from EPA 823-B-00-07 (USEPA Office of Water 2000). Water, sediment, and fish tissue standards and guidelines are presented in Appendix C.

Physical habitat

Raw physical habitat data began as a set of seven SAS files and were quality-checked before being used to calculate site-level summary statistics. Quality-checking and calculation tools were provided by USEPA Office of Research and Development (USEPA-ORD in Corvallis, OR) in the form of a set of SAS programs, as explained and outlined in Kaufmann et al. (1999). A series of 22 programs was used to check for file structure, internal consistency, and missing, illegal, and illogical values. Some results required reference to original data sheets and subsequent manual amendment of data files; changes included recoding of variable categories and correction of typos. "Clean" raw physical habitat data were then manipulated and compressed via a series of 17 additional programs into a single file containing site-level summary statistics. From this master file, a smaller file was also extracted (Phabbest) containing a subset of these - the measures that ORD determined were most useful in pilot data exploration.

Fish Community

Fish community data metrics were calculated from three input files: the sample data file (species/site/count) extracted from the KDWP database, the autecology file (reproductive \& feeding traits for all species) provided by US EPA Western Ecology Division, and the site info file (an abbreviated version of design file).

The sample data file was extracted from the KDWP database, compressed and restructured in MS Excel, then imported into SAS. Other preliminary work for processing fish data included: checking taxonomic names for consistency, verifying that autecology records were present for each species, compressing records for collection categories (release/voucher/tissue), and resolving data for hybrids and incomplete identifications. Incompletely identified specimens (genus only; no species) were excluded if a congener was present, and hybrids were excluded if at least one parent species was present at the site. This was done in order to avoid artificial inflation of diversity.

The three input files were manipulated via a series of 32 SAS programs into a set of individual metrics files, which in turn were compressed into a single file containing site-level summary metrics, from which IBIs were then calculated. The 8 -metric IBI was developed by the US EPA

Western Ecology Division, based on data from 1994-95 collections in Kansas, Missouri, and Nebraska; details are presented in Appendix D.

The fish programs were modified to incorporate native range data for fishes. Fish distribution data to the HUC-8 level were acquired from NatureServe (NatureServe 2004), incorporated into the analysis programs, and used to score fish as native vs. introduced.

All-data file

Site data and chemistry data were merged with site-level summary statistics for physical habitat and fish community characteristics. The final file contains about 1000 variables comprising measured and derived parameters, flags, and comments. A small subset of these was used in analysis for the results presented here.

Data presentation

Cumulative distribution functions (CDFs) with 95% confidence intervals were plotted using the standard Horvitz-Thompson estimator for extensive resources (Diaz-Ramos, Stevens Jr. et al. 1996). The Horvitz-Thompson variance estimate is used to construct confidence limits. Note that there are more precise variance estimators now available in the form of local variance estimators (Stevens Jr. and Olsen 2003).

$\underline{\text { Results }}$

General Considerations

Reference sites are a handpicked set of sites; no claim is made to representativeness, but they were selected by regional experts to represent "high-quality sites." Summary statistics are presented to describe characteristics of this population of sites.

Recall that randomly selected sites are weighted according to their representativeness in the population. Therefore they cannot be represented with traditional summary statistics or histograms. The preferred method of reporting and describing population distributions is via Cumulative Distribution Functions (CDFs). CDFs allow depiction of measured values for the entire population of sampled sites, extrapolated to the full population of sites that they represent. Data from random sites are presented as estimated Cumulative Distribution Functions, with 95\% confidence intervals.

When available, the median ($50^{\text {th }}$ percentile) value from reference sites is superimposed as a vertical line on the CDF of random sites, for comparison of the two populations. Cautious inferences may be made based on the relationship of the "reference" median to the "random" median.

Water, Sediment, and Fish Tissue Chemistry

Population summaries for water chemistry, sediment chemistry, and fish tissue chemistry of reference sites are given in Appendix E. Summaries of data from random sites are given in Appendix F (water chemistry), Appendix G (sediment chemistry), and Appendix H (fish tissue chemistry). For those analytes for which criteria, benchmarks, or guidelines are available, comparison of the random population to these values is given in tables in Appendix I.

Physical Parameters and Water Chemistry

Results are shown in Appendix E and Appendix F. At the time of sampling, reference streams had a median flow of about 1 cfs , whereas random streams had a median flow of about 0.1 cfs . The reference stream flow median about matched the $70^{\text {th }}$ percentile of the random population (Figure 1). This is interesting for two reasons. First, it suggests that the reference stream population is probably not proportionally representative of "fifth order and lower streams" in Kansas. Second, although sampling is done at low flow, the flow value of " 1 cfs " has a particular significance for Kansas. In 2001, the Kansas Legislature passed Substitute for Senate Bill 204, which declassifies all streams with a 10-year median flow under 1 cfs . There is a nontrivial possibility that many of the streams sampled would not meet that criterion and therefore fail to be subject to classification and therefore regulation.

Figure 1. CDF of mean flow based on random sites, with reference-site median superimposed for comparison. Note logarithmic scale.

About three-fourths of the stream km had turbidity values of <20 NTU, which is fairly clear - a possible indicator that most samples were probably taken during normal flow periods.
Differences in turbidity may be the natural result of different soil types (suspended clay particles contribute to higher turbidity) or may be caused by excessive soil erosion runoff in vulnerable watersheds. Water temperature at time of sampling ranged from about 14-28 C, with a random median of about 21 and reference median of about 24. All values met Aquatic Life Use criterion for streams (Appendix I).

As can be expected in a region with a high proportion of limestone, total alkalinity (buffering capacity) was high in all streams, and the reference and random medians were similar - around $200 \mathrm{mg} / \mathrm{L}$ bicarbonate. Reference streams had somewhat higher median pH than random streams, however ($\sim 8.3 \mathrm{vs} . \sim 8.1$); this could be reflective of overall greater productivity or could simply indicate that reference streams were in areas with less acidic soils. Almost all random stream km met the ALU criterion for pH . Dissolved oxygen ranged from around $1 \mathrm{mg} / \mathrm{L}$ to around $12 \mathrm{mg} / \mathrm{L}$ (Figure 2). The reference population median and random population medians were both slightly over $6 \mathrm{mg} / \mathrm{L}$, which exceeds the ALU criterion. However, based on random samples, more than one-fourth of stream km failed the ALU criterion for dissolved oxygen (Appendix I), which is $5.0 \mathrm{mg} / \mathrm{L}$.

Dissolved Oxygen in Water

Figure 2. CDF of dissolved oxygen based on random sites, with reference-site median superimposed for comparison. The ALU criterion for DO is $5.0 \mathrm{mg} / \mathrm{L}$.

The reference population medians for both total nitrogen and total phosphorus were slightly lower than the random-population median, with the reference median falling between the $20^{\text {th }}$ and $40^{\text {th }}$ percentiles for the random population. This pattern also held for sulfate and chloride, as well as a number of metals: barium, calcium, lead, magnesium, manganese, potassium, and sodium - suggesting that reference streams' chemistry may be slightly, but not dramatically, better than the general population.

Lead in Water

Figure 3. CDF of total lead in water based on random sites, with reference-site median superimposed for comparison. Lead was detected at all random sites. The ALU criterion for lead is hardness-dependent. No sites failed the acute ALU criterion for lead, but if measured levels were persistent, about 17% of sites would fail the chronic ALU criterion.

There were a few metals for which values were low enough to be nondetect or nearly all nondetect in all samples, reference and random: cadmium, chromium, nickel, and silver. There were also a few metals for which the reference population samples were all nondetect along with most of the random samples, but a few random samples had measurable values: arsenic, copper, iron, selenium, and zinc. Mercury was measurable at one random site and one reference site.

Some biocides were not found at measurable levels; these included diazinon, chlordane, propachlor, and trifluralin. Others were measurable only in a small fraction of samples; these include alachlor, atrazine, chlorpyrifos, and metolachlor.

None of the metal or biocide levels in random sites exceeded acute ALU criteria (Appendix I). There were a few metal and biocide analytes for which some stream km are predicted to fail the chronic ALU criterion; these were lead, selenium, mercury, atrazine, and chlorpyrifos. One ammonia criterion was also exceeded in some cases.

Sediment Chemistry

Sediment chemistry results are given in Appendix E (reference sites) and Appendix G (random sites). Results from random sites must be interpreted with caution. What may in some cases appear to be a range of measured values may in fact be a range of nondetect reporting limits; be sure to check the caption for information about nondetect vs. detect values.

Metals were detectable in sediment from most random sites. For some metals, reference site medians fell below the $20^{\text {th }}$ and $40^{\text {th }}$ percentile values for random sites; these include arsenic, barium, chromium, copper, lead (Figure 4), nickel, and zinc. For cadmium the two medians were about equal. Overall these results echo the pattern found in water chemistry: reference sites may have slightly, but not dramatically, less contamination than random sites.

Lead in Sediment

Figure 4. CDF of total lead in sediment based on random sites, with reference-site median superimposed for comparison. Values shown represent both detected levels and reporting levels for nondetects; detect = $20527 \mathrm{~km} /$ Nondetect $=802 \mathrm{~km}$.

Three metals had notable occurrence patterns: selenium, mercury, and silver. Based on random sites, selenium was detected for only about one-third of total stream km based on random sites, and was detected at only 2 of 30 reference sites. Mercury was detected for slightly less than onehalf of stream km based on random sites (Figure 5), but was detected at 22/30 reference sites (Appendix E). Silver was not detected in any sediment at random or reference sites.

Mercury in Sediment

Figure 5. CDF of total mercury in sediment based on random sites, with reference-site median superimposed for comparison. Lead was not detected at all sites. Detect $=10071 \mathrm{~km} /$ Nondetect $=11258 \mathrm{~km}$.

No biocides were detected in sediment at random sites representing more than 3% of stream km . The biocides detected at low frequency were aroclor 1254, some DDT metabolites (p,p'-DDE and p,p'-DDT), hexachlorobenzene, and some chlordane metabolites (cis-, trans-, and technical chlordane; cis- and trans- nonachlor, heptachlor epoxide, and oxychlordane). Of these, only
technical chlordane occurred at a concentration high enough to exceed threshold for a sedimenttoxicity guideline (Appendix I). The only biocide detected at a reference site was hexachlorobenzene (Appendix E). Biocides tested but not detected at reference or random sites include: aldrin; alachlor; aroclors 1016, 1221, 1232, 1242, 1248, and 1260; atrazine; alpha-, beta-, and gamma- BHCs; chlorpyrifos, diazinon, dieldrin, disulfoton, endrin, heptachlor, metolachlor, propachlor, and trifluralin.

Fish Tissue Chemistry

Fish tissue samples were collected at random sites representing less than half of the total stream km and only about two-thirds of the reference sites. Furthermore, the list of fishes from which tissue samples were taken includes both bottom-dwellers and mid-water species (see Appendix A, second part). Finally, the samples were whole-fish samples, whereas human health consumption guidelines are for filet only. For these reasons, all tissue chemistry results must be interpreted with caution.

Some metals and biocides were detected neither at random sites nor at reference sites: Arsenic; aldrin; aroclors 1016, 1221, 1232, 1242, 1248, 1260; alpha-, beta-, and gamma- BHCs; chlorpyrifos; DDT; diazinon; disulfoton; and endrin. Hexachlorobenzene was detected at one reference site but no random sites.

A few analytes were detected in fish tissue at both random and reference sites: cadmium, lead, mercury, selenium, mercury (Figure 5), dieldrin, DDE, DDD, trans-nonachlor. A few biocides were detected only at random sites, among them aroclor 1254 and a number of chlordane metabolites (technical chlordane, cis- and trans- chlordane, heptachlor, heptachlor epoxide, cisnonachlor, and oxychlordane). Because many fish species tend to immigrate and emigrate within and between streams and stream reaches, finding contaminated fish at reference sites may or may not indicate that the site is also contaminated.

Mercury in Fish Tissue

Figure 6. CDF of total mercury in fish tissue based on random sites, with reference-site median superimposed for comparison. Fish tissue samples were collected at only about half of the sites, so stream km may not be a good
representation of total Kansas stream km in the sampling frame. Mercury was not detected at all sites. Detect $=$ $9493 \mathrm{~km} /$ Nondetect $=945 \mathrm{~km}$.

Although metals and biocides were not found at very many of the random sites, the concentrations at which they occurred sometimes exceeded the subsistence and even recreational consumption limit guidelines recommended for "EPA green areas," which suggests that unlimited consumption is not acceptable. The problematic substances (Appendix I) are arsenic, chlordane metabolites (as a group) and heptachlor expoxide in particular, DDT metabolites (as a group), dieldrin, and gamma-BHC (lindane).

Physical Habitat

Reference site summary statistics are given as tables in Appendix J; random-site results are given as CDFs in Appendix K, with reference-site medians superimposed for reference.

Channel and reach morphology

Reference sites were, on the whole, bigger streams than random sites-whether measured by wetted width (Figure 7), bankfull width, Thalweg mean depth (Figure 8), flow (Figure 1), or reach length (see Appendix K). This may reflect a site selection bias.

Figure 7. CDF of mean wetted width based on random sites, with reference-site median superimposed for comparison.

Thalweg Mean Depth (cm)

Figure 8. CDF of Thalweg mean depth based on random sites, with reference site median superimposed for comparison.

Reference sites appeared slightly more incised than random, with medians of 3 m and 2.5 m , respectively (Figure 9), which could be simply a function of size; almost all channels were incised with heights ranging from about 0.75 to 6.0 m .

Slopes were small, with 90% of stream km estimated to have a slope of 0.5% or less (Figure 9). Reference and random channel median sinuosities were similar (~ 1.1, see Appendix K),

Figure 9. CDF of mean channel incision height based on random sites, with reference site median superimposed for comparison.

Figure 10. CDF of mean slope based on random sites, with reference site median superimposed for comparison.

What is more interesting from a biotic standpoint is the difference the reference population exhibits in measures of channel morphology variation - which translates into functional residual pool habitats during low-flow periods and variety of microhabitats year-round. This is reflected in a higher standard deviation in Thalweg depth (Figure 11) a higher mean residual depth (Figure 12), and a number of other derived metrics shown in Appendix K.

Std Dev of Thalweg Depth (cm)

Figure 11. CDF of standard deviation of Thalweg depth based on random sites, with reference site median superimposed for comparison.

Figure 12. CDF of mean residual depth based on random sites, with reference site median superimposed for comparison.

Substrate

Embeddedness is a reflection of sedimentation - sediment deposited in the channel fills interstitial spaces between larger substrate particles, reducing potential habitat for macroinvertebrates. By definition, sand and silt are considered " 100% embedded," whereas cobble half-buried in sediment is " 50% embedded." Median embeddedness for random stream km was over 90% (Figure 13), but median embeddedness value for reference streams, on the other hand, was only about 65%. The noted reduction in embeddedness within reference sites may indicate that erosion and transport of sediment from the watershed into the stream is reduced when compared to random sites and watersheds.

Figure 13. CDF of mean embeddedness based on random sites, with reference site median superimposed for comparison.

The substrates for randomly-selected streams were dominated by small particles. The median "percent composition" was about 90% particles under 2 mm in diameter (Figure 14). The median value of mean substrate diameter for random stream km was in fact about 0.15 , which corresponds to sand or fines (Figure 15), whereas the median for reference streams was about 7.5 mm , which corresponds to coarse gravel. The absolute variation in substrate particle size (Figure 16) was also greater for the median reference stream (std dev $=5.1 \mathrm{~mm}$) than it was for the median from random streams (std dev $=3.4 \mathrm{~mm}$).

Substrate Sand \& Fines -- <2 mm (\%)

Figure 14. CDF of substrate composition based on random sites, with reference site median superimposed for comparison.

Figure 15. CDF of mean substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as $\log 10(\mathrm{~mm})$, calculated from class-diameter medians).

Standard Deviation of Substrate Diameter

Figure 16. CDF of standard deviation of mean substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as $\log 10(\mathrm{~mm})$, calculated from class-diameter medians).

At first glance, these striking differences might suggest that reference streams are less affected by detrimental sediment runoff than are most streams. However, this conclusion may not be valid. Differences in substrate composition could reflect stream health. However, they could also reflect different stream types. Recall that reference streams are physically different from random streams - in width, depth, slope, and variability of channel morphology. It may be that differences in substrate composition between reference and randomly-selected streams have as much to do with representativeness as with health. Many Kansas streams, especially those in the Western High Plains and Central Great Plains, are historically probably slow-flowing, sandybottomed streams with minimal variation in substrate and channel morphology. The randomlyselected population probably contains streams in a number of categories. For this reason, it is difficult to draw conclusions about stream health based solely on substrate composition.

Streambed stability

One quantitative conclusion that can be drawn from substrate composition, however, relates to the bed stability. Raw measurements of flow, channel morphology, and in-channel features are used to generate an estimate of erodible substrate diameter, i.e., the size of the largest particle that is mobile during bankfull flow (Figure 17). Estimated erodible substrate diameter for random streams ranged from about 2 to about 68 mm , with a median around 8 mm .

Figure 17. CDF of estimated erodible substrate diameter based on random sites, with reference site median superimposed for comparison. (Values reported as $\log 10(\mathrm{~mm})$.

The theoretical particle size can then be compared to the actual size of particles in the streambed in order to derive a measure of "erodibility." Given the large size of erodible particles, it is no surprise that bed stability is very low. A bed stability of less than zero corresponds to erosion and one greater than zero corresponds to deposition. With respect to Log 10 Relative Bed Stability (LRBS) values, Kaufmann et al. (1999, p. 50) reported that "least-disturbed EMAP streams... in the Midwest Cornbelt Great Plains generally tend to have LRBS values between -.5 and $+0.5 \ldots$ [and] progressive intensity of human land uses is generally associated with sediment 'fining,' indicated by declining values of LRBS." The authors report that for the aforementioned region, scores to ± 0.5 are "good," scores to ± 2.5 are "impaired," and scores past ± 2.5 are "highly impaired."

Relative Bed Stability - Est 2

Figure 18. CDF relative bed stability based on random sites, with reference site median superimposed for comparison. Values below zero represent erosion; values above zero represent deposition. (Values reported as Log10.)

In fact, the random-streams median value for LRBS is about -1.5 , whereas the reference median is -0.3 (Figure 18). This finding suggests that whatever the substrate composition, channel shape, and hydrodynamics of streams in Kansas once were, the current conditions are not conducive to maintaining stable streambeds-a finding that is supported by channel incision data (Figure 9).

Riparian Cover

Mean canopy density at bank and at mid-channel for randomly selected reaches (as measured with a densiometer) ranged from 10 to 100%. The at-bank medians for random and reference populations were similar (around 80%), but median mid-channel density was lower for reference populations (Figure 19); this could be a reflection of wider channels rather than different vegetation patterns.

Figure 19. CDF of mean canopy density at mid-channel (measured by densiometer), as based on random sites, with reference site median superimposed for comparison.

Based on extrapolation from random sampling, 50% of stream km had three layers of riparian vegetation present for at least 90% of the reach (Figure 20), suggesting that many of our stream corridors have well developed riparian zones. The ground layer is 0 to 0.5 m ; the midlayer is 0.5 to 5 m , and the canopy is over 5 m .

Figure 20. CDF of three-layer riparian coverage based on random sites, with reference site median superimposed for comparison.

On the other hand, the median percent cover provided by canopy (vegetation layers $>5 \mathrm{~m}$) is less than 10% for random sites, and about 90% of stream km are estimated to have less than 30% cover provided by canopy (Figure 21). The median canopy cover for reference sites is slightly higher, but these measures suggest that canopy cover may be sparse and that much of the channel shading provided by mid-height (0.5 to 5 m) vegetation layers.

Figure 21. CDF of percent cover provided by canopy layer ($>5 \mathrm{~m}$), as based on random sites, with reference site median superimposed for comparison. Outlier values of $0.53-0.76$ (representing less than 3% of stream km) not shown.

Riparian Disturbance

Disturbance to the riparian area is measured and reported as a proximity-weighted index of human activities. Disturbances are scored in eleven categories, two of which are considered agricultural (Row crops, Pasture/range/hay fields) and nine non-agricultural (Walls/dikes/revetments, Buildings, Pavement, Roads/railroads, Pipes, Landfills/trash, Parks/lawns, Logging operations, Mining activities).

A disturbance index is calculated based on proximity-weighted scores from both banks at all transects: (a) in channel or on channel margin, weight, wt. $=1.5$ (b) within 10 m of channel, wt=1 (c) more than 10 m from channel, weight $=0.67$. (d) Not present $=0$. The maximum score for a single category of disturbance at a given site is 1.5 . The theoretical maximum for a set of n disturbances would be 1.5 x n , though in reality this would not happen.

Both the reference sites and the random sites yielded a median non-agricultural human disturbance score of only about 0.25 (Figure 22). This is the kind of score that would occur if the stream were running close to a road or lawn on one bank, and had no other disturbances. Only about 15% of wadeable stream km are estimated to have a score over 1, and about 30% of stream km are estimated to have no non-agricultural disturbance at all.

Riparian Disturbance - Sum Non-Agricultural Types

Figure 22. CDF of non-agricultural riparian disturbance (sum of nine types) as based on random sites, with reference site median superimposed for comparison. Maximum possible score is $1.5 \times 9=13.5$

Agricultural disturbance (Figure 23) was much more common than non-agricultural; the median proximity-weighted value based on randomly selected sites was near 1.0. The median for reference sites was lower at around 0.6 , a value that corresponds to the $25^{\text {th }}$ percentile value for random sites. This suggests that reference sites in fact may be found in areas with less (or at least less proximal) agricultural disturbance. In fact, local and watershed-level land use is a commonly considered factor in the selection of reference sites and watersheds.

Riparian Disturbance - Sum Agricultural Types

Figure 23. CDF of agricultural-type riparian disturbance (two types), as based on random sites, with reference site median superimposed for comparison. Maximum possible score is $1.5 \times 2=3$

Randomly-selected sites yield an interesting distribution pattern with respect to agricultural disturbance; there appear to be three fairly discrete classes, with breakpoints at 0.67 and 1.5 , suggesting that presence of agricultural disturbance is fairly uniform along a given reach. Very few km are without agricultural disturbance. Roughly 40% of km have ag-disturbance values of 0.67 or less, roughly another 15% have values between 0.67 and 1.0 , and about 45% have values over 1.0. An ag-disturbance score of 1.0 or more would correspond to the presence of row crop or pasture within 10 m of both banks at every transect.

Fish Cover

In both random and reference stream populations, the most ubiquitous fish cover types were Brush/small debris and Overhanging vegetation. Based on sampling of random sites, over 70\% of stream km lacked boulders altogether, $>70 \%$ lacked artificial cover, $>50 \%$ lacked filamentous algae, $>50 \%$ lacked aquatic macrophytes, $>40 \%$ lacked large woody debris, and $>40 \%$ lacked undercut banks. Some stream km have no fish cover whatsoever (see CDFs in Appendix K and table below).

Median percent cover for any single cover type ranged from $0-4 \%$ in random population and $0-$ 5% in reference population. Interestingly, reference population medians were equal to or slightly higher than random medians for every type of cover except Brush/small debris (See Appendices $\mathrm{J}-\mathrm{K}$ and Table 1 below).

Table 1. Fish cover descriptive statistics.

	Random			Reference		
Type of fish cover	min	median	max	min	median	max
Filamentous algae	0%	0%	57%	0%	2%	40%
Aquatic macrophytes	0%	0%	87%	0%	0%	67%
Large woody debris	0%	0.5%	39%	0%	1%	15%
Undercut banks	0%	$<0.5 \%$	49%	0%	1%	49%
Boulders/rock ledges	0%	1%	48%	0%	1%	38%
Brush/small debris	0%	4%	46%	0%	3%	11%
Overhanging vegetation	0%	4%	88%	0%	5%	52%
Artificial structures	0%	0%	5%	0%	0%	0%
All natural types	0%	13%	110%	4%	23%	111%
All types	0%	13%	110%	4%	23%	111%

These medians sound quite low, but they conceal a somewhat better picture of fish habitat. In fact, some sites did have high percent cover for any single type (see "max" columns in Table 1). Therefore the overall population median values for fish cover were 13% for the random population and 23% for the reference population. In fact, the CDF above shows that about 40% of randomly selected stream km have at least 10% cover of some type. In general, sampled streams have little fish cover both in terms of extent and diversity.

Fish Cover - All Types

Figure 24. CDF of mean residual depth based on random sites, with reference site median superimposed for comparison. Outlier values of $0.94-1.1$ (representing less than 2% of km) not shown.

Large Woody Debris

Large woody debris (LWD) is defined as any wood at least 1.5 m long and a small end diameter of at least 0.1 m . As measured by volume, there is very little in-channel large woody debris in Kansas wadeable streams (Figure 25); about 30\% of stream km apparently have no measurable volume of debris. Furthermore, the median value for reference streams is $0 \mathrm{~m}^{3} / \mathrm{m}^{2}$.

LWD Vol in Bkf chnl (m3/m2-all sizes)

Figure 25. CDF of large woody debris volume, in the bankfull channel, as based on random sites. Outlier values of 0.08 and 0.14 (representing less than 3% of km) not shown. Reference site median value (based on $30 / 30$ sites) $=0$.

Another way to measure LWD is in "number of pieces." Figure 26 shows number of pieces per 100 m of stream reach; in this case, pieces both in the bankfull channel and above it. Note that the median for random sites is about 2 pieces per 100 m (recall that reaches ranged from 150 to 300 m), and the median for reference sites is only a little higher. Based on random sites, an estimated 80% of wadeable stream km in Kansas have fewer than 1 piece of LWD per 10 m anywhere in or above the bankfull channel.

Figure 26. CDF of large woody debris pieces, in or above the bankfull channel, based on random sites, with reference site median superimposed for comparison. Outlier values of $60.0-87.4$ (representing less than 2% of km) not shown.

Large woody debris may have effects where it is present (e.g., providing microhabitats or channel structure), but is evidently not a pervasive presence in Kansas wadeable streams.

Fish Communities

Seventy-eight different fish species were collected in this study; see Appendix L. The ten most commonly collected species were Lepomis cyanellus (green sunfish), Cyprinella lutrensis (red shiner), Campostoma anomalum (central stoneroller), Micropterus salmoides (largemouth bass), Etheostoma spectabile (orangethroat darter), Notropis stramineus (sand shiner), Pimephales promelas (fathead minnow), Lepomis macrochirus (bluegill), Semotilus atromaculatus (creek chub), and Phenacobius mirabilis (suckermouth minnow). These ten species accounted for 45% (509/1121) of all identifiable individual fishes collected.

The State of Kansas recognizes five Endangered fish species, 11 Threatened species, and 23 Species In Need of Conservation (SINC) (Kansas Department of Wildlife and Parks 2005; Kansas Department of Wildlife and Parks 2005). In this project, there were eight SINC captured, four Threatened Species, and one Endangered Species. Interestingly, and perhaps encouragingly, although many of these were collected only at "reference" sites, as might be expected, some of these were also found at "random" sites; see Appendix L for more information.

A recent paper by Haslouer and coauthors (Haslouer, Eberle et al. 2004) suggests that an additional six species collected in this study should merit SINC or Threatened status based on their interpretations of both historic and current distributions and known perturbations. Three darter species (Etheostoma flabellare, E. nigrum and E. whipplei) that are not currently listed by the state of Kansas are suggested to be either SINC or Threatened species by these authors. Haslouer et al. also indicated that two shiner species (Luxilus cardinalis and L. cornutus) and the southern redbelly dace (Phoxinus erythrogaster) should be candidates for listing as either Threatened or SINC species.

Fish community IBIs were calculated using the 8-metric index developed at EPA Western Ecology Division (Corvallis). Details of the IBI and its component metrics are outlined in Appendix D; the index uses a 100-point scale. Basically, lower scores of the IBI indicate impacted or disturbed fish communities, whereas higher scores are reflective of less disturbed systems. The overall range of scores varied from zero to the low nineties.

IBI Score 8-metric

Figure 27. CDF of the Index of Biotic Integrity (IBI), based on random sites, with reference site median superimposed for comparison. The IBI is an 8 -metric index based on fish community data.

The median IBI score for random sites was 52 , with values ranging from 0 to 93 . The randomsite median of 52 was close to the $25^{\text {th }}$ percentile value of the reference population (which was 54); the median score for reference sites was 71 . Population summary values for the reference population are given in Appendix M, and distributions for the random population are presented in Appendix N .

Three of the metrics did not distinguish the reference from random populations; these were Native family richness, Proportion of tolerant individuals, and Proportion of individuals as carnivores. However, in five metrics, the reference population median did exceed that of the general population. These metrics were: Native species richness, Sensitive species richness, Number of native benthic species, Number of long-lived species, Proportion of individuals of introduced species. This last metric, which is the ratio of all individuals to the number specimens of introduced species scores high when there are no or few individuals of introduced species.

Notably, based on results from the randomly selected population, 70% of stream km had a sensitive-species score of zero, which suggests that sensitive species are rare or absent from a large proportion of Kansas streams. The fact that few streams appear to support pollutionsensitive species may not be surprising in view of the large extent of the Kansas landscape that has been altered to accommodate modern agricultural management. However, any interpretation of sensitive-species scores has to be based on the understanding that there are few sensitive species known to occur in Kansas.

Relationships among Fish and Other Factors

Pearson correlations among fish measures and chemistry analytes, and fish and physical habitat measures (Appendix O) were examnied in the stream populations as a whole, without
differentiating between random or reference. There were no significant ($\mathrm{p}<0.05$) strong ($\mathrm{r}>|0.50|$) correlations among fish and chemistry analytes. Since 25% of the streams had dissolved oxygen (DO) values below the state standard (Figure 2), we further explored DO (WG17) relationships with fish measures, and found little of significance, except that as DO increased, the proportion of non-native individuals (pintro) decreased ($\mathrm{p}=0.01, \mathrm{r}=-0.28$), while the proportion of native individuals (pnativ) increased ($\mathrm{p}=0.01, \mathrm{r}=0.28$).

We did not examine correlations among every fish measure and every physical habitat measure, but focused on measures suggested either by biological meaning or from state studies (NDEQ, IDNR) (Appendix O). Significant, strong relationships are reported in Table 2, and some corresponding scatter plots are presented in Figures $27-29$, which show regression lines and Loess smoothing lines (red).

Table 2. Physical habitat variables that were significantly ($\mathrm{p}<0.05$) and highly (Pearson's $\mathrm{r}>|0.50|$) correlated. * denotes normal distribution. See Appendix O for codes.

fish	measure	r
numnatsp* *		xdepth
	ssdepth	0.53
numnatfm	xdepth	0.54
nssen	XEMBED	-0.50
psen	XEMBED	-0.56
nsnsen	XEMBED	-0.51
pnsen	XEMBED	-0.52
ptole	XEMBED	0.62
	lrbs_bw5*	-0.60
	PCT_SAFN	0.68
	PCT_SFGF	0.57
	PCT_BGR	-0.59
pntole	XEMBED	0.57
	Irbs_bw5*	-0.58
	PCT_SAFN	0.63
	PCT_SFGF	0.53
	PCT_BGR	-0.56
tolrnt	lrbs_bw5*	0.52

fish	Measure	r
nsnlunk	w1_hag	-0.50
	rpgt75	0.52
	Sddepth	0.57
epcarn	XEMBED	0.59
	Isubd_sd*	-0.62
	PCT_SA	0.50
	PCT_SAFN	0.64
	PCT_SFGF	0.66
	PCT_BGR	-0.68
epinsiv	XEMBED	-0.56
	Isubd_sd*	0.63
	PCT_SAFN	-0.61
	PCT_SFGF	-0.64
	PCT_BGR	0.66
epmac	WF04	-0.53
ephbmic	XEMBED	-0.63
	PCT_SAFN	-0.62
	PCT_SFGF	-0.60
	PCT_BGR	0.63

Substrate Type

In general, as percent sand and fines (PCT_SAFN) and percent fine gravel (PCT_SFGF) increased, the proportion of tolerant individuals (ptole) in a sample increased ($\mathrm{r}=\overline{0} .68, \mathrm{r}=0.57$); however this proportion (ptole) decreased ($\mathrm{r}=-0.59$) as percent coarse gravel increased (PCT_BIGR) (Figure 27). This is reflected in the metric of percent tolerant score (tolrnt), though only significantly and strongly with percent sand and fines ($\mathrm{r}=-0.53$). Conversely, the number of sensitive species (nssen) and proportion of sensitive individuals (psen) decreased as substrate size increased ($\mathrm{r}=-0.54, \mathrm{r}=-0.56$). The metric of the sensitive species richness score (sensit)
reflects this pattern, though not as strongly (vs. PCT_SAFN r=-0.45, vs. PCT_SFGF r=-0.40, vs. PCT_BIGR r=0.47).

Figure 27. Matrix of the fish metrics of proportion of tolerant individuals (ptole), percent tolerant score (tolrnt), number of sensitive species (nssen) and proportion of sensitive individuals (psen) against the physical habitat variables of percent sand and fines (PCT_SAFN), percent fine gravel (PCT_SFGF), and percent coarse gravel (PCT_BIGR). From the 2000-01 Kansas REMAP dataset. Regression line in black, Loess (80%) smoothing curve in red.

Trophic guild metrics also followed similar patterns, though not necessarily strongly or significantly (Figure 28). Percent insectivores (insect) decreased with increasing percentages of sand and fines ($\mathrm{r}=-0.20, \mathrm{p}=0.06$) and percent fine gravel ($\mathrm{r}=-0.11, \mathrm{p}=0.30$), while they increased with increasing percentage of coarse gravel $(\mathrm{r}=0.16, \mathrm{p}=0.13)$. This is probably due to the relationships of macroinvertebrates with substrate type. The opposite relationships were true of
percent herbivores + micropahgic omnivores (herbiv) (vs. PCT_SAFN r=0.45, vs. PCT_SFGF $\mathrm{r}=0.44$, vs. PCT_BIGR $\mathrm{r}=-0.36$, all $\mathrm{p}=0.00$).

Figure 28. Matrix of the fish metrics of percent insectivores (insect) and percent herbivores + microphagious omnivores (herbiv) against the physical habitat variables of percent sand and fines (PCT_SAFN), percent fine gravel (PCT_SFGF), and percent coarse gravel (PCT_BIGR). From the 2000-01 Kansas REMAPP dataset. Regression line in black, Loess (80%) smoothing curve in red.

None of the IBIs, which are based on the metrics, were significantly strongly correlated with any of the habitat measures. This may indicate a need to examine the components of the IBIs rather than the IBIs.

Channel Morphology

Again, the proportion of sensitive individuals (psen) and tolerant individuals (ptole) followed opposite trends to each other with channel morphology (Figure 29). Sensitive individuals increased with increasing bankfull width (XBKF_W) and bed stability (lrbs_bw5), while tolerant individuals decreased. Tolerant individuals increased with increasing embeddedness (XEMBED) and proximity of agricultural riparian (w1_hag), while sensitive individuals decreased.

Figure 29. Matrix of the fish metrics of proportion of sensitive individuals (psen) and proportion of tolerant individuals (ptole) against the physical habitat variables of bankfull width (XBKF_W), bed stability (lrbs_bw5), embeddedness (XEMBED), and proximity of agricultural riparian (w1_hag). From the 2000-01 Kansas REMAP dataset. Regression line in black, Loess (80%) smoothing curve in red.

Flow (WF04) showed a negative significant correlation ($\mathrm{p}=0, \mathrm{r}=-0.53$) with the proportion of macrophagic omnivores (epmac). Flow correlations in the 2000-01 dataset showed low (r=0.24 to 0.34) but significant ($\mathrm{p}<0.05$) positive correlations with number of species (numspec) and native species (numnatsp), number of families (numfam) and native families (numnatfam), number of sensitive species (nssen) and native sensitive species (nsnsen), number of trophic strategies (ntroph) and trophic strategies of native spp. (nntroph), proportion of herbivores and microphagic omnivores (ephbmic), $\%$ insectivores + invertivores score (insinv), $\%$ omnivores + herbivores score (omnihb), \% tolerant spawners score (tolrepr), and \% clinging substrate spawners score (gravel). Though the correlation coefficiant may be low, whatever part of these relationships that is explained by flow is strong. There were no significant correlations between flow and any of the IBIs.

Temporal comparison of 1994-95 and 2000-01 data

Temporal changes in fish metrics and IBIs and stream flow were examined by comparing this set of 2000-01 REMAP data with the set of data collected in 1994-95 (Waters 1997a, 1997b). For comparisons, the two sets of data were coded as y1 for 1994-95 and y2 for 2000-01, and the 57 random sites that were sampled in both sets of years were examined. Sites during which one of the years was not sampled or no fish were collected were filtered out of analyses. Paired t-tests were used to examine normal data, while the Wilcoxon signed-rank test was used to examine non-normal data.

Table 3 summarizes the paired comparisons of metrics and IBIs, all IBIs were non-normal, while metrics were a mix of normal and non-normal data. Tolrnt was the only metric that increased from 1994-95 to 2000-01 ($\mathrm{p}=0.00$). Natsp, natfam, nindiv, sensit, smbenth, benthic, wcolumn, wcolspcl, sunfish, minnow, longlive, troph, and repro decreased ($\mathrm{p}=0.00$), while alien, carn, insinv, insect, herbiv, omni, omnihb, tolrepr, and gravel showed no difference between year sets ($\mathrm{p} \geq 0.09$). It is interesting that troph and repro decreased, while the constituent metrics showed no difference between year sets (Figure 30 and Figure 31). This may be due to the variance around the constituent metrics being high enough to effect no difference from one year set to the next, but as a group, the variance is small enough to reveal yearly mean differences.

The Wilcoxon signed-rank test revealed that the fish IBIs based on 1994-95 surveys differed from the IBIs based on 2000-01 surveys ($\mathrm{p}=0.00$) (Figure 32). IBIs of the majority of sites decreased from 1994-95 to 2000-01 (with site differences ranging from 0 to 92). Seven sites increased, with four sites having IBI differences ranging from 0.2 to 6 , and three sites having large IBI differences of 20 to 37 (KES008, Medicine Cr. Tributary, Osborne Co.; KES046, Dragoon Cr. Wabanusee Co.; and KES053, Card Cr., Montgomery Co.).

Table 3. Temporal comparisons of fish metrics and IBIs, showing abbreviated variable name, variable name, data normality, significance value (p value), and changes from 1994-95 (y1) to 2000-01 (y2), and the mean and standard deviation (std. dev.) for both the y1 data and y2 data. The paired t-test was used to examine normal data, while the Wilcoxon signed-rank test was used to examine non-normal data. See Appendix O. for more completely spelled out variable names.

abbr.	variable	normality	p value	change from y1 to y2	y1		y2	
					mean	std dev	mean	std dev
natsp	Native Species Richness Score (0-10)	y	0.000	decrease	9.43	1.62	6.30	2.27
natfam	Native Family Richness Score (0-10)	y	0.000	decrease	9.75	1.09	7.16	2.23
nindiv	No. Indiv. Score (0-10)	n	0.000	decrease	10.00	0.00	6.48	2.79
sensit	Sensit. Spp. Rich. Score (0-10)	y	0.000	decrease	4.35	5.00	2.31	3.55
tolrnt	\% Tolerants Score (0-10)	y	0.015	increase	3.60	3.53	4.57	3.59
smbenth	Ntv Sm. Benth. Spp. Rich. Score (0-10)	y	0.000	decrease	7.40	4.05	4.67	3.23
benthic	Native Benth. Spp. Rich. Score (0-10)	y	0.000	decrease	7.61	4.02	4.16	3.02
wcolumn	Ntv Wtr. Col. Spp. Rich. Score (0-10)	n	0.000	decrease	9.18	2.59	6.20	2.63
wcolspcl	Ntv Wtr. Col. Spec. Spp. Score (0-10)	y	0.000	decrease	7.26	4.50	3.62	3.86
sunfish	Ntv Centrarchid Spp. Rich. Score (0-10)	n	0.000	decrease	8.39	3.71	4.83	3.20
minnow	Ntv Cyprinid Spp. Rich. Score (0-10)	y	0.000	decrease	10.00	0.00	5.88	2.75
longlive	Ntv. Long-lived Spp. Rich. Score (0-10)	n	0.000	decrease	9.37	2.31	6.21	2.48
alien	\% Non-natives Score (0-10)	n	0.739	no difference	9.44	0.89	9.37	1.18
troph	No. Trophic Strat. Score (0-10)	n	0.000	decrease	9.41	2.24	8.44	1.79
carn	\% Carnivores Score (0-10)	y	0.389	no difference	5.97	4.05	5.49	4.16
insinv	\% Insectivores+Invertivores Score (0-10)	n	0.451	no difference	6.32	3.71	6.73	3.69
insect	\% Insectivores Score (0-10)	y	0.291	no difference	4.79	3.92	5.35	3.96
herbiv	\% Herbivores+Micro. Omniv. Score (0-10)	n	0.091	no difference	9.30	2.13	9.21	2.10
omni	\% Macrophagic Omnivores Score (0-10)	n	0.398	no difference	8.29	3.21	8.60	2.73
omnihb	\% Omniv. + Herbiv. Score (0-10)	n	0.831	no difference	7.60	3.31	7.70	2.95
repro	No. Reprod. Strat. Score (0-10)	n	0.000	decrease	9.65	1.50	7.27	2.88
tolrepr	\% Tolerant Spawners Score (0-10)	y	0.830	no difference	6.05	3.07	5.96	3.05
gravel	\% Cln. Subs. Spawners Score (0-10)	y	0.838	no difference	6.04	3.06	5.96	3.05
ibi1	IBI Score (0-100)--MAHA metrics+longlive	n	0.000	decrease	78.36	14.91	63.23	13.61

Table 3. Continued.
change from $\quad y 1 \quad y 2$

abbr.	variable	normality	p value	y 1 to y 2	mean	std dev	mean	std dev
ibi4	IBI based on S:N and resp. (10 metrics)	n	0.000	decrease	77.13	16.15	59.74	15.06
ibi5	IBI Score (13 metrics)	n	0.000	decrease	75.91	15.54	60.48	13.61
ibi6	IBI score (12 metrics)	n	0.000	decrease	77.20	16.85	60.55	14.73
ibi7	IBI score (11 metrics)	n	0.000	decrease	78.47	16.23	59.94	15.25
ibi8	IBI score (8 metrics)	n	0.000	decrease	74.41	17.54	56.95	16.77
WG04	Flow (CFS), REMAP Field Parameters	N	0.005	decrease	20.26	71.54	16.52	53.25

Figure 30. Plots for reproductive strategy score (repro) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01.

Figure 31. Plots for $\%$ tolerant spawners score (tolrepr) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were normal. Regression line in black. The extreme scatter indicates no difference between 1994-95 and 2000-01 values.

Figure 32. Plots for IBI1 for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01. All IBIs followed these trends, and were significantly different ($\mathrm{p}=0.00$) between year groups. Circled are sites KES008, KES046, and KES053 which greatly increased from 1994-95 to 2000-01.

Flow (WF04) was examined as a possible influence on the fish measurements (Figure 1and Figure 33). As with most of the fish measurements that showed temporal changes, flow decreased from 1994-95 to 2000-01 ($\mathrm{p}=0.00$). There were large standard deviations around the flow mean in both years, due to four of the sites having very large flows ($>95 \mathrm{CFS}$, sites KS030, KS035, KS047, KS057).

Figure 33. Plots for stream flow (CFS) for 1994-95 and 2000-01. The normal probability plot of differences shows that the data were non-normal. The scatter plot shows a regression line (red) if there had been a one-to-one ratio, and hence no difference, between year sets, and also shows the actual regression line (black) which indicates a decrease from 1994-95 to 2000-01. The four sites with flow > 95 CFS do not appear in the scatter plot.

Conclusion

The EMAP program yields valuable information about the status of streams and comparisons of reference and random populations. Examining data on a regional basis can help ecologists, managers, etc. make decisions about specific parameters and specific sites. The CDFs allowed a visual comparison for each parameter of overall stream condition versus a presumed reference population. They also provided a visual comparison of each parameter to its state criteria.
Overall, few statistically distinct relationships were found among the measured parameters. If fish metrics showed a change between 1994-95 to 2000-01, it tended to decrease. Managers may want to further investigate this trend, or continue sampling to examine longer-term changes. Within general changes for the streams as a population, managers can also examine changes within specific sites, such as Medicine Cr. Tributary (KES008), Dragoon Cr. (KES046), and Card Cr. (KES046), all of which showed increases in fish IBIs from 1994-95 to 2000-01.

REFERENCES

Diaz-Ramos, S., D. L. Stevens Jr., et al. (1996). EMAP Statistical Methods Manual, EPA/620/R96/XXX. Corvallis, OR, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory.

Haslouer, S. G., M. E. Eberle, et al. (2004). "Current status of native fish species in Kansas." Transactions of the Kansas Academy of Science 108(1): 32-46.

Ingersoll, C. G., D. D. MacDonald, et al. (2000). Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines: United States Geological Survey (USGS) final report for the U.S. Environmental Protection Agency (USEPA) Great Lakes National Program Office (GLNPO) (EPA 905/R-00/007).

Kansas Biological Survey, Kansas Department of Wildlife and Parks, et al. (September 1999). Quality Assurance Project Plan for Measuring Status and trends of biological resources in Kansas streams using EMAP probability-based sampling: 76 pp.

Kansas Department of Health and Environment Bureau of Water (2004). Kansas surface water quality standards - Tables of numeric criteria: 15 pp .

Kansas Department of Wildlife and Parks (2005). Kansas Species in Need of Conservation (updated January 2005). Topeka, KS. 2005: PDF file.

Kansas Department of Wildlife and Parks (2005). Kansas Threatened and Endangered Species (updated January 2005). Topeka, KS. 2005: PDF file.

Kaufmann, P. R., P. Levine, et al. (1999). Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. Washington, D.C., U.S. Environmental Protection Agency.

Kimball, H. (2003). Standard Operating Procedure No. 2410.15E: Estimating and Documenting Data Quality (USEPA Region VII Laboratory). Kansas City: 89 pp.

Lazorchak, J. M., D. J. Klemm, et al., Eds. (1998). Environmental Monitoring and Assessment Program-Surface Waters. Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. Washington, D.C., U.S. Environmental Protection Agency.

NatureServe (2004). Kansas native fish distributions by HUC-8. Downloadable animal dataset from NatureServe Central Databases. www.natureserve.org/getData/dataSets/watershedHucs/index.jsp. Access date: 18 May 2005.

Stevens Jr., D. L. and A. R. Olsen (2003). "Variance Estimation for Spatially Balanced Samples of Environmental Resources." Envirometrics 14: 593-610.

USEPA Environmental Monitoring and Assessment Program (1999). Surface Waters: Quantifying physical habitat in wadeable streams.

USEPA Office of Water (2000). Guidance for Assessing Chemical Contaminant Data for Use In Fish Advisories, Volume 1: Fish Sampling and Analysis, Third Edition (EPA 823-B-00-007). Washington, D.C.

USEPA Office of Water (2004). National recommended water quality criteria: 22 pp .
USEPA Region VII (May 1994). Quality Assurance Project Plan for measuring the health of the fisheries in EPA Region VII; Region VII (R-EMAP) Study. Kansas City: 89 pp.

Waters, R. (1997a). 1994 Regional Environmental Monitoring and Assessment Program Statewide random stream survey results and summary. Pratt, Kansas, Kansas Department of Wildlife and Parks: iv+27+four appendices.

Waters, R. (1997b). 1995 Regional Environmental Monitoring and Assessment Program Statewide random stream survey results and summary. Pratt, Kansas, Kansas Department of Wildlife and Parks: iv $+27+$ four appendices.

APPENDICES

Appendix A.1. Map of sites sampled and attempted. A-1
Appendix A.2. Locality of reference sites sampled and attempted. A-3
Appendix A.3. Locality of random sites sampled and attempted A-5
Appendix A.4. Locality of sites not sampled. A-9
Appendix A.6. Status of random sites sampled and attempted. A-12
Appendix A.7. Status of sites not sampled. A-16
Appendix A.8. Sites from which fish samples were collected. A-17
Appendix B. Physical and chemical parameters measured/analyzed. B-1
Appendix C. Water, sediment, and fish tissue criteria, guidelines, and screening values. C-1
Appendix D. Description, development, and modifications of the fish IBI. D-1
Appendix E. Water chemistry, sediment chemistry, and fish tissue chemistry summary from reference sites E-1

Appendix A.1. Map of sites sampled and attempted.

Kansas REMAP Sites, 2000-01

Appendices A. 2 - A.7. Localities of referencec and random sites.

Table headers:
KES - site code used in this report
STORET - USEPA STORage and RETrival database code
YEAR - year that the site was sampled
KDWP ID - site code used by the Kansas Department of Wildlife and Parks
NAME - name of the site
COUNTY - County that the site is located in
LAT - site latitude in decimal degrees
LON - site longitude in decimal degrees
LEGAL - legal description of the site
XSTATUS - whether or not the site was sampleable
VALXSTAT - whether or not the site was wadeable
TYPE - type of site, REF = reference, RAND = random, OTH = other
WGT_R7 - weighting system used by REMAP
DRAINAGE - drainage system in which the site is found, Missouri River, Arkansas River, etc.
HUC8 - hydrologic unit code 8 in which the site is found
ER - code for the ecoregion in which the site is found
ER NAME - name of the ecoregion in which the site is found
FISHREG - fish region in which the site is found, was not assigned for sites in which no fish were collected.
HDI - habitat diversity index of the site

KES	STORET	YEAR	KDWP ID	NAME	COUNTY	LAT	LON	LEGAL
KES022	009476	2000	2076	NORTH FORK LITTLE SUGAR CREEK	LINN	38.1350	-94.9728	NE4 Sec. 15 T22S R22E
KES034	009494	2000	KRS-005	OTTER CREEK	GREENWOOD	37.7064	-96.2142	NW4 Sec. 16 R27SR11E
KES036	009495	2000	KRS-003	SOUTH FORK NINNESCAH RIVER	KINGMAN	37.6436	-98.2914	NE4 Sec. 3 T298S R9W
KES037	009497	2000	2097	MILL CREEK	WABAUNSEE	39.0267	-96.2694	$\begin{aligned} & \text { NE4 Sec. } 11 \text { T12S } \\ & \text { R10E } \end{aligned}$
KES061	009641	2000	KRS-006	DEEP CREEK	RILEY	39.1300	-96.4392	NW4 Sec. 5 T11S R9E
KES063	009642	2001	KRS-024	NORTH BRANCH INDEPENDENCE	DONIPHAN	39.6792	-95.2194	NW4 Sec. 30 T4S R20E
KES064	009644	2001	KRS-016	PAWNEE CREEK	BOURBON	37.7775	-94.8267	$\begin{aligned} & \text { SW. } 4 \text { Sec. } 18 \text { T26S } \\ & \text { R24E } \end{aligned}$
KES065	009645	2001	KRS-017	CANVILLE CREEK	NEOSHO	37.6939	-95.1942	SW4 Sec. 14 T27S R20E
KES067	009647	2000	KRS-007	SHOAL CREEK	CHEROKEE	37.0417	-94.6411	NW4 Sec. 35 T34SR25E
KES069	010136	2000	KRS-001	CIMARRON RIVER	MORTON	37.1281	-101.8947	$\begin{aligned} & \text { NW4 Sec. } 4 \text { T34S } \\ & \text { R42W } \end{aligned}$
KES070	010137	2000	KRS-002	SMOKY HILL RIVER	LOGAN	38.8503	-100.9950	SW4 Sec. 9 T14S R33W
KES071	010138	2000	KRS-004	SOUTH FORK COTTONWOOD RIVER	BUTLER	38.0567	-96.5303	NW4 of NE4 Sec. 16 T23S R8E
KES072	010139	2000	KRS-008	SOLDIER CREEK	JACKSON	39.2631	-95.8856	SW4 Sec. 17 T9S R14E
KES073	010140	2000	KRS-009	CHIKASKIA RIVER	STEVENS	37.1800	-97.6167	$\begin{aligned} & \text { NW4 Sec. } 14 \text { T22S } \\ & \text { R3W } \end{aligned}$
KES074	010141	2000	KRS-010	NEHRING CREEK	WABAUNSEE	38.9375	-96.1958	$\begin{aligned} & \text { NE4 Sec. } 9 \text { T13S } \\ & \text { R11E } \\ & \hline \end{aligned}$
KES075	010142	2000	KRS-011	ILLINOIS CREEK	WABAUNSEE	38.9658	96.3439	$\begin{aligned} & \text { NE4 Sec. } 31 \text { T12S } \\ & \text { R10E } \end{aligned}$
KES076	010210	2001	KRS-012	CEDAR CREEK	CHASE	38.2267 \|	-96.8353	$\begin{aligned} & \text { SW4 Sec. } 13 \text { T21S } \\ & \text { R5E } \end{aligned}$

Appendix A. 2 continued.								
KES	STORET	YEAR	KDWP ID	NAME	COUNTY	LAT	LON	LEGAL
KES077	010211	2001	KRS-013	WOLF CREEK	CLOUD	39.5542	-97.7161	NW4 Sec. 12 T6S R4W
KES078	010212	2001	KRS-014	THOMPSON CREEK	KIOWA	37.4889	-99.1322	$\begin{aligned} & \text { SW4 Sec. } 25 \text { R29S } \\ & \text { R17W } \end{aligned}$
KES079	010213	2001	KRS-015	TURKEY CREEK	BARBER	37.4286	-98.9192	SW4 Sec. 13 T30S R15W
KES080	010214	2001	KRS-018	SANDY CREEK	WOODSON	37.7575	-95.8531	$\begin{aligned} & \text { S2 of NE4 Sec. } 27 \\ & \text { T26S R14E } \\ & \hline \end{aligned}$
KES081	010215	2001	KRS-019	WEST SALT CREEK	LANE	38.6669	-100.6725	$\begin{aligned} & \text { NE4 Sec. } 18 \text { T16S } \\ & \text { R30W } \end{aligned}$
KES082	010216	2001	KRS-020	KILL CREEK	OSBORNE	39.4200	-98.7867	NW4 Sec. 28 T7S R13W
KES083	010217	2001	KRS-021	LANDON CREEK	RUSSELL	38.7600	-98.8572	$\begin{aligned} & \text { E2 Sec. } 10 \text { T15S } \\ & \text { R14W } \end{aligned}$
KES084	010218	2001	KRS-022	SPRING CREEK	ELLSWORTH	38.7764	-98.4375	$\begin{aligned} & \text { SE4 Sec. } 4 \text { T15S } \\ & \text { R10W } \end{aligned}$
KES085	010219	2001	KRS-028	MOSQUITO CREEK	DONIPHAN	39.8492	-95.1008	$\begin{aligned} & \text { NE4 Sec. } 30 \text { T2S } \\ & \text { R21E } \end{aligned}$
KES086	010220	2001	KRS-025	BUCK CREEK	JEFFERSON	39.0858	-95.2900	NW4 Sec. 22 T11S R19E
KES087	010221	2001	KRS-026	CAPTAIN CREEK	JOHNSON	38.8997	-95.0300	SE4 of SW4 Sec. 24 T13S R21E
KES088	010222	2001	KRS-029	LONG CREEK	OSAGE	38.4714	-95.6767	SE4 of NE4 Sec. 19 T18S R16E
KES089	010223	2001	KRS-030	MEDICINE LODGE RIVER	KIOWA	37.4383	-99.1592	SW4 Sec. 14 T30S R17W
KES090	010224	2001	KRS-031	LITTLE OSAGE RIVER	BOURBON	38.0139	-94.7833	$\begin{aligned} & \text { SW4 Sec. } 28 \text { T23S } \\ & \text { R24E } \end{aligned}$
KES091	010225	2001	KRS-023	CANEY RIVER	CHATAUQUA	37.0361	-96.3744	$\begin{aligned} & \text { SE4 Sec. } 1 \text { T35S } \\ & \text { R9E } \end{aligned}$

KES	STORET	YEAR	KDWP ID	NAME	COUNTY	LAT	LON	LEGAL
KES001	009451	2000	2051	SANDY CREEK	HARPER	37.0278	-98.2147	SW4 Sec. 5 T35S R8W
KES002	009453	2000	2053	CROOKED CREEK	MEADE	37.0919	-100.3292	NE4 Sec. 14 T34S R28W
KES003	009454	2000	2054	SOUTH FORK REPUBLICAN RIVER	CHEYENNE	39.6667	-102.0339	$\begin{aligned} & \text { NE4 Sec. } 33 \text { T4S } \\ & \text { R42W } \end{aligned}$
KES004	009455	2000	2055	WILLOW CREEK	WALLACE	38.9297	-101.9153	NW4 Sec. 18 T13S R41W
KES005	009456	2000	2056	SOUTH BRANCH HACKBERRY CREEK	GOVE	38.9397	-100.6258	NW4 Sec. 11 T13S R30W
KES006	009457	2000	2057	SMOKY HILL RIVER	TREGO	38.7828	-99.9481	NW4 Sec. 1 T15S R24W
KES007	009458	2000	2058	BIG CREEK	PHILLIPS	39.7471	99.2148	SW4 Sec. 35 T3S R17W
KES008	(none)	2000	2059	MEDICINE CREEK TRIBUTARY	OSBORNE	39.2966	-99.0417	$\begin{aligned} & \text { SW4 Sec. } 6 \text { T9S } \\ & \text { R15W } \end{aligned}$
KES009	009460	2000	2060	LOST CREEK	ROOKS	39.3717	99.4081	$\begin{aligned} & \text { SW4 Sec. } 11 \text { T8S } \\ & \text { R19W } \\ & \hline \end{aligned}$
KES010	009461	2000	2061	BIG CREEK	ELLIS	38.8183	-99.2667	$\begin{aligned} & \text { SE4 Sec. } 24 \text { T14S } \\ & \text { R18W } \end{aligned}$
KES011	009462	2000	2062	TRIB. TO CEDAR CREEK	RUSSELL	38.9383	-98.7375	NW4 Sec. 11 T13S R13W
KES012	009463	2000	2063	WEST ELKHORN CREEK	LINCOLN	38.9319	-98.1158	$\begin{aligned} & \text { SE4 Sec. } 8 \text { T13S } \\ & \text { R7W } \end{aligned}$
KES013	009465	2000	2065	LINDSEY CREEK	OTTAWA	39.1686	-97.6003	NE4 Sec. 24 T10S R3W
KES014	009466	2000	2066	GYPSUM CREEK	SALINE	38.7428	-97.4286	$\begin{aligned} & \text { SE4 Sec. } 16 \text { T15S } \\ & \text { R1W } \end{aligned}$
KES015	009467	2000	2067	WEST TURKEY CREEK	DICKINSON	38.6425	-97.1814	SW4 Sec. 23 T16S R2E
KES016	009468	2000	2068	EMMA CREEK	HARVEY	37.9483	-97.4447	$\begin{aligned} & \text { NW4 Sec. } 21 \text { T24S } \\ & \text { R1W } \end{aligned}$
KES017	009469	2000	2069	SAND CREEK	HARVEY	38.0300	-97.3592	$\begin{aligned} & \text { SE4 Sec. } 19 \text { T23 } \\ & \text { R1E } \end{aligned}$

Appendix A. 3 continued.								
KES	STORET	YEAR	KDWP ID	NAME	COUNTY	LAT	LON	LEGAL
KES018	009640	2000	2070	COTTONWOOD RIVER	MARION	38.3436	-97.0292	$\begin{aligned} & \text { NE4 Sec. } 6 \text { T20S } \\ & \text { R4E } \end{aligned}$
KES019	009471	2000	2071	EAST CREEK	MORRISS	38.5489	-96.5781	NW4 Sec. 30 T17S R8E
KES020	009472	2000	2072	SOUTH BIG CREEK	COFFEY	38.0631	-95.8478	NW4 Sec. 11 T23S R14E
KES021	009473	2000	2073	INDIAN CREEK TRIB.	JOHNSON	38.9386	-94.6847	NW4 Sec. 7 T13S R25E
KES023	009480	2000	2080	WHETSTONE CREEK	SHAWNEE	39.0578	-95.5364	NW4 Sec. 33 T11S R17E
KES024	009481	2000	2081	BEMIS CREEK	BUTLER	37.8525	-96.7322	NE4 Sec. 26 T25S R6E
KES025	009482	2000	2082	EAST PAINTERHOOD CREEK	ELK	37.4761	-95.9950	$\begin{aligned} & \text { SW4 Sec. } 33 \text { T29S } \\ & \text { R13E } \end{aligned}$
KES026	009483	2000	2083	CROOKED CREEK	COFFEY	38.1192	-95.6042	NW4 Sec. 24 T22S R16E
KES027	009484	2000	2084	NINNESCAH RIVER	SEDGWICK	37.5028	-97.5364	NE4 Sec. 28 T29S R2W
KES028	009485	2000	2085	KUENZLI CREEK	WABAUNSEE	38.9878	-96.1944	$\begin{aligned} & \text { SE4 Sec. } 21 \text { T12S } \\ & \text { R11E } \end{aligned}$
KES029	009486	2000	2086	CEDAR CREEK	DONIPHAN	39.8556	-95.3158	NW4 Sec. 29 T2S R19E
KES030	009487	2000	2087	REPUBLICAN RIVER	CLAY	39.2994	-97.0397	E2 Sec. 1 T9S R3E
KES031	009488	2000	2088	WEST CREEK	REPUBLIC	39.6708	-97.6233	SW4 Sec. 26 T4S R3W
KES032	009489	2000	2089	FOUR MILE CREEK	GEARY	39.0772	-96.8653	$\begin{aligned} & \text { SW4 Sec. } 22 \text { T11S } \\ & \text { R5E } \end{aligned}$
KES033	009492	2000	2092	BANNER CREEK	JACKSON	39.4542	-95.7536	$\begin{aligned} & \text { SW4 Sec. } 9 \text { T7S } \\ & \text { R15E } \\ & \hline \end{aligned}$
KES035	009495	2001	2124	SOUTH FORK NINNESCAH RIVER	KINGMAN	37.5869	-97.9331	NW4 Sec. 25 T28S R6W
KES038	009601	2001	2101	SPRING CREEK	COWLEY	37.3514	-96.5256	$\begin{aligned} & \text { SE4 Sec. } 16 \text { T31S } \\ & \text { R8E } \end{aligned}$

Appendix A. 3 continued.								
KES	STORET	YEAR	KDWP ID	NAME	COUNTY	LAT	LON	LEGAL
KES039	009605	2001	2105	BEAVER CREEK	CHEYENNE	39.5989	-101.4181	NE4 Sec. 25 T5S R37W \& SE4 Sec. 24 T5
KES040	009607	2001	2107	SAND CREEK	GRAHAM	39.3661	-99.9089	$\begin{aligned} & \text { SE4 Sec. } 8 \mathrm{~T} 8 \mathrm{~S} \\ & \text { R23W } \end{aligned}$
KES041	009608	2001	2108	WEST BEAVER CREEK	SMITH	39.9111	-98.9614	$\begin{aligned} & \text { NE4 Sec. } 1 \text { T2S } \\ & \text { R15W } \end{aligned}$
KES042	009610	2001	2110	PARSONS CREEK	WASHINGTON	39.5819	-97.2644	$\begin{aligned} & \text { SE4 Sec. } 25 \text { T5S } \\ & \text { R1E } \end{aligned}$
KES043	009611	2001	2111	KITTEN CREEK	RILEY	39.2203	-96.7058	$\begin{aligned} & \text { SE4 Sec. } 36 \text { T9S } \\ & \text { R6E } \end{aligned}$
KES044	009612	2001	2112	TRIB. TO NORTH COTTONWOOD	MARION	38.5161	-97.2767	NW4 Sec. 1 T18S R1E
KES045	009613	2001	2113	EAST BRANCH SHARPES CREEK	CHASE	38.2153	-96.4514	$\begin{aligned} & \text { NE4 Sec. } 19 \mathrm{~T} 21 \mathrm{~S} \\ & \text { R9E } \end{aligned}$
KES046	009614	2001	2114	DRAGOON CREEK	WABAUNSEE	38.8519	-96.1083	NW4 Sec. 8 T14S R12E
KES047	009615	2001	2115	CROSS CREEK	POTTAWATOMIE/JACKSON	39.2881	-96.0350	NW4 Sec. 12 T9S R12E
KES048	009616	2001	2116	DELAWARE RIVER TRIB.	JEFFERSON	39.3911	-95.5450	$\begin{aligned} & \text { SE4 Sec. } 32 \text { T8S } \\ & \text { R17E } \end{aligned}$
KES049	009618	2001	2118	IANTHA CREEK	ANDERSON	38.3586	-95.3561	NW4 Sec. 31 T19S R19E
KES050	009619	2001	2119	NORTH WEA CREEK TRIB.	MIAMI	38.6667	-94.6703	SW4 Sec. 8 T16S
KES051	009620	2001	2120	POTTAWATOMIE CREEK TRIB.	ANDERSON	38.3450	-95.2336	NE4 Sec. 6 T20S R20E
KES052	009621	2001	2121	ELM CREEK	MIAMI	38.4725	-94.6542	NW4 Sec. 21 T18S R25E
KESO52	009621	2001	2121	CARD CREEK	MONTGOMERY	37.2275	95.5850	$\begin{aligned} & \text { SE4 Sec. } 30 \text { T32S } \\ & \text { R14E } \\ & \hline \end{aligned}$
				TRIB. TO NORTH CEDAR	COWLEY	37.1164	-95.5850	SW4 Sec. 4 T34S
KES054	009623	2001	2123	CREEK	COWLEY	37.1164	-96.5392	R8E
KES055	009625	2001	2125	NORTH FORK NINNESCAH RIVER	SEDGWICK	37.6244	97.7378	$\begin{aligned} & \text { SE4 Sec. } 10 \text { T28S } \\ & \text { R4W } \end{aligned}$

Appendix A.3 continued.								COUNTY
KES	STORET	YEAR	KDWP ID	NAME	LAT	LON	LEGAL	
KES056	009626	2001	2126	PAWNEE RIVER	PAWNEE	$38.1950-99.5436$	SW4 Sec.29 T21S R20W	
KES057	009627	2001	2127	SMOKY HILL RIVER	SALINE	38.7003	-97.5700	SW4 Sec.32 T15S R2W
KES058	009628	2001	2128	CHAPMAN CREEK TRIB.	DICKINSON	$39.0164-97.0586$	NE4 Sec.14 T12S R3E	
KES059	009630	2001	2130	NINNESCAH RIVER TRIB.	SUMNER	$37.3872-97.3356$	NE4 Sec.5 T31S R1E	
KES060	009633	2001	2133	SANDY CREEK	HARPER	$37.0336-98.2072$	NE4 Sec.5 T35S R8W	
KES068	009648	2001	2148	WHITES CREEK	CLOUD	$39.5392-97.8444$	NW4 Sec.14 T6S R5W	

| Appendix A.4. Locality of sites not sampled. | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| KES | STORET | YEAR | KDWP ID | NAME | COUNTY | LAT | LON | LEGAL |
| KES092 | 9452 | 2000 | KS002S | MULE CREEK | COMANCHE | 37.2582 | -99.0351 | |
| KES093 | 9464 | 2000 | KS014S | UNNAMED TRIB., BLOOD
 CREEK | BARTON | $38.5619-99.0204$ | | |
| KES094 | 9474 | 2000 | KS024S | KANSAS RIVER | DOUGLAS | 39.0193 | -95.2811 | |
| KES095 | 9475 | 2000 | KS025S | POTTAWATOMIE CREEK | MIAMI | $38.4853-94.9407$ | | |
| KES096 | 9477 | 2000 | KS026S | DRAGOON CREEK (A) | OSAGE | $38.7083-95.8037$ | | |
| KES097 | 9478 | 2000 | KS027S | STRANGER CREEK | LEAVENWORTH | $39.1292-95.0171$ | | |
| KES098 | 9479 | 2000 | KS028S | FISH POND CREEK | JEFFERSON | $39.2806-95.3681$ | | |
| KES099 | 9602 | 2000 | KS040S | UNNAMED TRIB., S. BR., | GERDIGRIS RIVER | GREENWOOD | $38.1469-96.3070$ | |
| KES100 | 9606 | 2000 | KS044S | DRY CREEK | HODGEMAN | $38.1790-99.8000$ | | |
| KES101 | 9609 | 2000 | KS047S | ELM CREEK (A) | CLOUD | $39.5192-97.5011$ | | |
| KES102 | (none) | 2001 | 2117 | TRIB. TO ROCK CREEK | COFFEY | $38.3753-95.5808$ | | |
| KES103 | 9629 | 2000 | KS067S | NEOSHO RIVER | MORRIS | 38.5744 | -96.3881 | |
| KES107 | (none) | 2001 | KRS-027 | WOLF CREEK | RICE | $38.5153-97.9561$ | | |

Appendix A.5. Status of reference sites sampled and attempted.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER	ER NAME	FISHREG	HDI
KES022	SAMPLEABLE	WADEABLE	OTH	0	Missouri	10290102	40	Central Irregular Plains	LOWLAND	21
KES034	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070102	28	Flint Hills	LOWLAND	26
KES036	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260006	27	Central Great Plains	PLAINS	19
KES037	SAMPLEABLE	WADEABLE	OTH	0	Missouri	10270102	28	Flint Hills	LOWLAND	34
KES061	SAMPLEABLE	WADEABLE	REF	0	Missouri	1027010228	Flint Hills	LOWLAND	28	
KES063	SAMPLEABLE	WADEABLE	REF	0	Missouri	10240011	47	Western Corn Belt Plains	LOWLAND	23
KES064	SAMPLEABLE	WADEABLE	REF	0	Missouri	10290104	40	Central Irregular Plains	LOWLAND	8
KES065	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070205	40	Central Irregular Plains	LOWLAND	7
KES067	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070207	39	Ozark Highlands	UPLAND	33
KES069	SAMPLEABLE	WADEABLE	REF	0	Arkansas	1104000225	Western High Plains	PLAINS	28	
KES070	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260003	27	Central Great Plains	PLAINS	8
KES071	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070203	28	Flint Hills	LOWLAND	25
KES072	SAMPLEABLE	WADEABLE	REF	0	Missouri	10270102	28	Flint Hills	LOWLAND	22
KES073	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11060005	27	Central Great Plains	PLAINS	31
KES074	SAMPLEABLE	WADEABLE	REF	0	Missouri	1027010228	Flint Hills	LOWLAND	12	
KES075	SAMPLEABLE	WADEABLE	REF	0	Missouri	10270102	28	Flint Hills	LOWLAND	16
KES076	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070202	28	Flint Hills	LOWLAND	20

Appendix A. 5 continued.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER	ER NAME	FISHREG	HDI
KES077	SAMPLEABLE	WADEABLE	REF	0	Missouri	10250017	27	Central Great Plains	PLAINS	23
KES078	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11060003	26	Southwestern Tablelands	PLAINS	15
KES079	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11060003	26	Southwestern Tablelands	PLAINS	25
KES080	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070101	29	Central Oklahoma/Texas Plains		23
KES081	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260003	27	Central Great Plains	PLAINS	8
KES082	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260014	27	Central Great Plains	PLAINS	7
KES083	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260006	27	Central Great Plains	PLAINS	23
KES084	SAMPLEABLE	WADEABLE	REF	0	Missouri	10260006	27	Central Great Plains	PLAINS	22
KES085	SAMPLEABLE	WADEABLE	REF	0	Missouri	10240005	47	Western Corn Belt Plains	LOWLAND	23
KES086	SAMPLEABLE	WADEABLE	REF	0	Missouri	10270104	40	Central Irregular Plains	LOWLAND	20
KES087	SAMPLEABLE	WADEABLE	REF	0	Missouri	10270104	40	Central Irregular Plains	LOWLAND	18
KES088	SAMPLEABLE	WADEABLE	REF	0	Missouri	10290101	40	Central Irregular Plains	LOWLAND	13
KES089	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11060003	26	Southwestern Tablelands	PLAINS	22
KES090	SAMPLEABLE	WADEABLE	REF	0	Missouri	10290103	40	Central Irregular Plains	LOWLAND	31
KES091	SAMPLEABLE	WADEABLE	REF	0	Arkansas	11070106	29	Central Oklahoma/Texas Plains		18

Appen	.6. Status 0	ndom sites	mpl	and attem	pted.					
KES	XSTATUS	VALXSTAT	TYPE	WGT R7	DRAINAGE	HUC8	ER \#	ER NAME	FISHREG	HDI
KES001	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11060004	27	Central Great Plains	PLAINS	15
KES002	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11040007	26	Southwestern Tablelands	PLAINS	30
KES003	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10250003	25	Western High Plains	PLAINS	28
KES004	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260001	25	Western High Plains	PLAINS	10
KES005	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260005	27	Central Great Plains	PLAINS	10
KES006	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260003	27	Central Great Plains	PLAINS	21
KES007	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260012	27	Central Great Plains	PLAINS	27
KES008	SAMPLEABLE	INTWADE	RAND	472.44812	Missouri	10260014	27	Central Great Plains	PLAINS	10
KES009	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260014	27	Central Great Plains	PLAINS	24
KES010	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260007	27	Central Great Plains	PLAINS	24
KES011	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260009		Central Great Plains		19
KES012	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260010	27	Central Great Plains	PLAINS	19
KES013	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260015	27	Central Great Plains	PLAINS	27
KES014	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260008	27	Central Great Plains	PLAINS	25
KES015	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10260008	27	Central Great Plains	PLAINS	26
KES016	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11030012	27	Central Great Plains	PLAINS	9
KES017	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11030012	27	Central Great Plains	PLAINS	14
KES018	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11070202	28	Flint Hills	LOWLAND	27

Appendix A. 6 continued.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER \#	ER NAME	FISHREG	HDI
KES019	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11070201	28	Flint Hills	LOWLAND	28
KES020	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11070204	40	Central Irregular Plains	LOWLAND	9
KES021	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10300101	40	Central Irregular Plains	LOWLAND	29
KES023	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10270102	40	Central Irregular Plains	LOWLAND	7
KES024	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11030017	28	Flint Hills	LOWLAND	18
KES025	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11070104	29	Central Oklahoma/Texas Plains		18
KES026	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11070204	40	Central Irregular Plains	LOWLAND	7
KES027	SAMPLEABLE	WADEABLE	RAND	472.44812	Arkansas	11030016	27	Central Great Plains	PLAINS	10
KES028	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10270102	28	Flint Hills	LOWLAND	8
KES029	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10240005	47	Western Corn Belt Plains	LOWLAND	11
KES030	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10250017	28	Flint Hills	LOWLAND	15
KES031	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10250017	27	Central Great Plains	PLAINS	7
KES032	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10250017	28	Flint Hills	LOWLAND	23
KES033	SAMPLEABLE	WADEABLE	RAND	472.44812	Missouri	10270103	47	Western Corn Belt Plains	LOWLAND	25
KES035	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11030015	27	Central Great Plains	PLAINS	14
KES038	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11070106	28	Flint Hills	LOWLAND	16
KES039	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10250012	25	Western High Plains	PLAINS	9
KES040	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10260013	27	Central Great Plains	PLAINS	25

Appendix A. 6 continued.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER \#	ER NAME	FISHREG	HDI
KES041	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10260012	27	Central Great Plains	PLAINS	22
KES042	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10250017	27	Central Great Plains	PLAINS	13
KES043	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10270101	28	Flint Hills	LOWLAND	8
KES044	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11070202	27	Central Great Plains	PLAINS	13
KES045	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11070203	28	Flint Hills	LOWLAND	21
KES046	SAMPLEABLE	INTWADE	RAND	267.32359	Missouri	10290101	28	Flint Hills	LOWLAND	5
KES047	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10270102	28	Flint Hills	LOWLAND	25
KES048	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10270103	47	Western Corn Belt Plains	LOWLAND	19
KES049	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10290101	40	Central Irregular Plains	LOWLAND	9
KES050	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10290102	40	Central Irregular Plains	LOWLAND	19
KES051	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10290101	40	Central Irregular Plains	LOWLAND	21
KES052	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10290102	40	Central Irregular Plains	LOWLAND	8
KES053	SAMPLEABLE	INTWADE	RAND	267.32359	Arkansas	11070103	40	Central Irregular Plains	LOWLAND	7
KES054	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11070106	28	Flint Hills	LOWLAND	21
KES055	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11030014	27	Central Great Plains	PLAINS	17
KES056	SAMPLEABLE	WADEABLE	RAND	267.32359	Arkansas	11030005	27	Central Great Plains	PLAINS	7
KES057	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10260008	27	Central Great Plains	PLAINS	15
KES058	SAMPLEABLE	WADEABLE	RAND	267.32359	Missouri	10260008	27	Central Great Plains	PLAINS	16

$\|l\| l\|l\| l\|l\|$										
Appendix A.6 continued.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER \#	ER NAME	FISHREG	HDI
KES059	SAMPLEABLE	WADEABLE	RAND	267.32359 Arkansas	11030016	27	Central Great Plains	PLAINS	3	
KES060	SAMPLEABLE	WADEABLE	RAND	267.32359 Arkansas	11060004	27	Central Great Plains	PLAINS	19	
KES068	SAMPLEABLE	WADEABLE	RAND	267.32359 Missouri	10250017	27	Central Great Plains	PLAINS	7	

Appendix A.7. Status of sites not sampled.										
KES	XSTATUS	VALXSTAT	TYPE	WGT_R7	DRAINAGE	HUC8	ER	ER NAME	FISHREG	HDI
KES092	NOACCESS	ACCDENIED	PER	472.44812	Arkansas	11060002	26	Southwestern Tablelands	PLAINS	
KES093	NOACCESS	ACCDENIED	PER	472.44812	Arkansas	11030011	27	Central Great Plains	PLAINS	
KES094	NONSAMPERM	NOTWADE	PER	472.44812	Missouri	10270104	40	Central Irregular Plains	LOWLAND	
KES095	NONSAMPERM	NOTWADE	PER	472.44812	Missouri	10290101	40	Central Irregular Plains	LOWLAND	
KES096	NOACCESS	ACCDENIED	PER	472.44812	Missouri	10290101	40	Central Irregular Plains	LOWLAND	
KES097	NONSAMPERM	NOTWADE	PER	472.44812	Missouri	10270104	40	Central Irregular Plains	LOWLAND	
KES098	NOACCESS	ACCDENIED	PER	472.44812	Missouri	10270103	40	Central Irregular Plains	LOWLAND	
KES099	NOACCESS	ACCDENIED	PER	267.32359	Arkansas	11070101	28	Flint Hills	LOWLAND	
KES100	NOACCESS	ACCDENIED	PER	267.32359	Arkansas	11030006	27	Central Great Plains	PLAINS	
KES101	NOACCESS	ACCDENIED	PER	267.32359	Missouri	10250017	27	Central Great Plains	PLAINS	
KES102	NONSAMPERM	DRYVISIT	RAND	267.32359	Missouri	10290101	40	Central Irregular Plains	LOWLAND	
KES103	NONSAMPERM	NOTWADE	PER	267.32359	Arkansas	11070201	28	Flint Hills	LOWLAND	
KES107	NONSAMPERM	DRYVISIT	REF	0	Missouri	10260008	27	Central Great Plains	PLAINS	

Appendix A.8. Sites from which fish samples were collected.								
KES	ORET	YEARI		NAME	COUNTY	No.	Latin Name	Common Name
KES001	9451	2000	2051	SANDY CREEK	HARPER	2	Cyprinus carpio	common carp
KES003	9454	2000	2054	SOUTH FORK REPUBLICAN RIVER	CHEYENNE	3	Ameiurus melas	black bullhead
KES004	9455	2000	2055	WILLOW CREEK	WALLACE	3	Ameiurus melas	black bullhead
KES005	9456	2000	2056	SOUTH BRANCH HACKBERRY CREEK	GOVE	4	Cyprinus carpio	common carp
KES007	9458	2000	2058	BIG CREEK	PHILLIPS	3	Ameiurus melas	black bullhead
KES009	9460	2000	2060	LOST CREEK	ROOKS	1	Cyprinus carpio	common carp
KES010	9461	2000	2061	BIG CREEK	ELLIS	3	Cyprinus carpio	common carp
KES012	9463	2000	2063	WEST ELKHORN CREEK	LINCOLN	9	Semotilus atromaculatus	creek chub
KES015	9467	2000	2067	WEST TURKEY CREEK	DICKINSON	2	Catostomus commersoni	white sucker
KES017	9469	2000	2069	SAND CREEK	HARVEY	2	Cyprinus carpio	common carp
KES022	9476	2000	2076	NORTH FORK LITTLE SUGAR CREEK	LINN	2	Ameiurus natalis	yellow bullhead
KES024	9481	2000	2081	BEMIS CREEK	BUTLER	1	Cyprinus carpio	common carp
KES026	9483	2000	2083	CROOKED CREEK	COFFEY	2	Ameiurus melas	black bullhead
KES027	9484	2000	2084	NINNESCAH RIVER	SEDGWICK	3	Cyprinus carpio	common carp
KES029	9486	2000	2086	CEDAR CREEK	DONIPHAN	2	Ameiurus melas	black bullhead
KES030	9487	2000	2087	REPUBLICAN RIVER	CLAY	2	Cyprinus carpio	common carp
KES031	9488	2000	2088	WEST CREEK	REPUBLIC	3	Cyprinus carpio	common carp
KES033	9492	2000	2092	BANNER CREEK	JACKSON	4	Ameiurus natalis	yellow bullhead

Appendix A. 8 continued.								
KES	STORETY	YEAR	KDWP RID	NAME	COUNTY	No.	Latin Name	Common Name
KES034	9494	2000	$\begin{aligned} & \text { KRS- } \\ & 005 \end{aligned}$	OTTER CREEK	GREENWOOD	1	Pylodictis olivaris	flathead catfish
KES035	9495	2001	2124	SOUTH FORK NINNESCAH RIVER	KINGMAN	1	Cyprinus carpio	common carp
KES036	9495	2000	$K R S-$ 003	SOUTH FORK NINNESCAH RIVER	KINGMAN	1	Cyprinus carpio	common carp
KES043	9611	2001	2111K	KITTEN CREEK	RILEY	2	Ameiurus melas	black bullhead
KES049	9618	2001	12118	IANTHA CREEK	ANDERSON	1	Cyprinus carpio	common carp
KES055	9625	2001	2125	NORTH FORK NINNESCAH RIVER	SEDGWICK	1	Moxostoma erythrurum	golden redhorse
KES056	9626	2001	12126	PAWNEE RIVER	PAWNEE	2	Ameiurus melas	black bullhead
KES057	9627	2001	2127	SMOKY HILL RIVER	SALINE	1	Ictalurus punctatus	channel catfish
KES058	9628	2001	12128	CHAPMAN CREEK TRIB.	DICKINSON	6	Semotilus atromaculatus	creek chub
KES061	9641	2000	$\begin{aligned} & \text { KRS- } \\ & 006 \end{aligned}$	DEEP CREEK	RILEY	2, 1	Cyprinus carpio, Moxostoma macrolepidotum	common carp, shorthead redhorse
KES065	9645	2001	$\begin{aligned} & \text { KRS- } \\ & 1017 \end{aligned}$	CANVILLE CREEK	NEOSHO	2	Ameiurus natalis	yellow bullhead
KES068	9648	2001	12148	WHITES CREEK	CLOUD	1	Ameiurus melas	black bullhead
KES069	10136	2000	$\begin{aligned} & \text { KRS- } \\ & 001 \end{aligned}$	CIMARRON RIVER	MORTON	20	Cyprinus carpio	common carp
KES070	10137	2000	$\begin{aligned} & \text { KRS- } \\ & 0002 \end{aligned}$	SMOKY HILL RIVER	LOGAN	3	Cyprinus carpio	common carp
KES071	10138	2000	$\begin{aligned} & \text { KRS- } \\ & 0004 \end{aligned}$	SOUTH FORK COTTONWOOD RIVER	BUTLER	2	Ameiurus natalis	yellow bullhead
KES072	10139	2000	$\begin{aligned} & \text { KRS- } \\ & 0008 \end{aligned}$	SOLDIER CREEK	JACKSON	1	Cyprinus carpio	common carp
KES073	10140	2000	$0 \begin{aligned} & \text { KRS- } \\ & 009 \end{aligned}$	CHIKASKIA RIVER	STEVENS	1	Cyprinus carpio	common carp

Appendix A. 8 continued.							
KES	STORET	$\begin{array}{\|l\|l\|} \hline \text { KDWP } \\ \text { YEARID } \\ \hline \end{array}$	NAME	COUNTY	No.	Latin Name	Common Name
KES076	10210	$\begin{array}{\|l\|l\|} \hline \text { KRS- } \\ 2001012 \\ \hline \end{array}$	CEDAR CREEK	CHASE	2	Moxostoma erythrurum	golden redhorse
KES077	10211		WOLF CREEK	CLOUD	7	Semotilus atromaculatus	creek chub
KES078	10212	$\begin{array}{r\|r} & \text { KRS- } \\ 2001 & 014 \end{array}$	THOMPSON CREEK	KIOWA	1	Moxostoma erythrurum	golden redhorse
KES079	10213	$\begin{array}{r\|r} & \text { KRS- } \\ 2001015 \end{array}$	TURKEY CREEK	BARBER	2	Ameiurus natalis	yellow bullhead
KES080	10214	$\begin{array}{r\|rl} & \text { KRS- } \\ 2001018 \end{array}$	SANDY CREEK	WOODSON	1	Cyprinus carpio	common carp
KES081	10215	$\begin{gathered} \text { KRS- } \\ 2001019 \end{gathered}$	WEST SALT CREEK	LANE	1	Cyprinus carpio	common carp
KES083	10217	$\begin{array}{\|l\|l\|} \hline & \text { KRS- } \\ 2001 \\ 0 & 21 \\ \hline \end{array}$	LANDON CREEK	RUSSELL	2	Ameiurus natalis	yellow bullhead
KES084	10218	$\begin{array}{\|l\|l\|} \hline & \text { KRS- } \\ 2001 & 022 \\ \hline \end{array}$	SPRING CREEK	ELLSWORTH		Ameiurus melas	black bullhead
KES088	10222	$\begin{array}{\|l\|l\|} \hline & \text { KRS- } \\ 2001029 \\ \hline \end{array}$	LONG CREEK	OSAGE	1	Micropterus salmoides	largemouth bass
KES090	10224	$\begin{aligned} & \text { KRS- } \\ & 2001031 \\ & \hline \end{aligned}$	LITTLE OSAGE RIVER	BOURBON	1	Cyprinus carpio	common carp
KES091	10225	$2001 \|$KRS- O23	CANEY RIVER	CHATAUQUA	3	Moxostoma macrolepidotum	shorthead redhorse

Appendix B. Physical and chemical parameters measured/analyzed.

> Field measurements of water chemistry and physical parameters:

Conductivity (umhos/cm), REMAP Field Parameters
Temperature (Deg C), REMAP Field Parameters
Flow (CFS), REMAP Field Parameters
pH (SU), REMAP Field Parameters
Dissolved Oxygen (mg/L), REMAP Field Parameters

Analytes measured in water samples:

Organic Nitrogen (mg/L), by Calculation
Diazinon (ug/L), in Water by GC/EC
Alkalinity (bicarbonate, mg/L), in Water
Total Nitrogen (mg/L), by Calculation
Chloride (mg/L), in Water
Turbidity (NTU)
Hardness (as CaCO3, mg/L), in Water by Calculation
Silver (ug/L), Metals in Water by ICP for REMAP
Barium (ug/L), Metals in Water by ICP for REMAP
Chromium (ug/L), Metals in Water by ICP for REMAP
Copper (ug/L), Metals in Water by ICP for REMAP
Nickel (ug/L), Metals in Water by ICP for REMAP
Zinc (ug/L), Metals in Water by ICP for REMAP
Calcium (mg/L), Metals in Water by ICP for REMAP
Magnesium (mg/L), Metals in Water by ICP for REMAP
Sodium (mg / L), Metals in Water by ICP for REMAP
Potassium (mg/L), Metals in Water by ICP for REMAP
Arsenic (ug/L), in Water by AA
Cadmium (ug/L), in Water by AA
Lead in Water by AA (Lead, ug/L)
Selenium (ug/L), in Water by AA
Mercury (ug/L), in Water
Barium, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Chromium, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Copper, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Iron, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Manganese, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Nickel, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Selenium, Dissolved (ug/L), in Water by AA Zinc, Dissolved (ug/L), Dissolved Metals in Water by ICAP for REMAP Calcium, Dissolved (mg/L), Dissolved Metals in Water by ICAP for REMAP Magnesium, Dissolved (mg/L), Dissolved Metals in Water by ICAP for REMAP Arsenic, Dissolved (ug/L), in Water by AA
Cadmium, Dissolved (ug/L), in Water by AA
Lead, Dissolved (ug/L), in Water by AA
Silver, Dissolved (ug/L), in Water by AA
Mercury, Dissolved (ug/L), in Water by AA
Chlordane, technical (ug/L), REMAP Pesticides in Water by GC/EC
Alachlor (ug/L), REMAP Pesticides in Water by GC/EC

Appendix B continued. Analytes measured in water samples:
Propachlor (ug/L), REMAP Pesticides in Water by GC/EC
Atrazine (ug/L), REMAP Pesticides in Water by GC/EC
Trifluralin (ug/L), REMAP Pesticides in Water by GC/EC
Metolachlor (ug/L), REMAP Pesticides in Water by GC/EC
Chlorpyrifos (ug/L), REMAP Pesticides in Water by GC/EC
Ammonia, as Nitrogen (mg/L), in Water by Automated Distillation
Nitrate+Nitrite, as Nitrogen (mg/L), in Water
Total Kjeldahl Nitrogen (mg/L), in Water, Colorimetric
Total Phosphorus(mg/L), in Water, Colorimetric
Sulfate (mg/L), in Water
Analytes measured in sediment samples:
Decachlorobiphenyl (\% Rec), REMAP Pesticides in Soil by GC/EC
Disulfoton (ug/kg), REMAP Pesticides in Soil by GC/EC
Percent Solids (\%)
Total Organic Carbon (\%), in Soil
Silver (mg/kg), Metals in Solids by ICP for REMAP
Barium ($\mathrm{mg} / \mathrm{kg}$), Metals in Solids by ICP for REMAP
Chromium (mg/kg), Metals in Solids by ICP for REMAP
Copper ($\mathrm{mg} / \mathrm{kg}$), Metals in Solids by ICP for REMAP
Nickel ($\mathrm{mg} / \mathrm{kg} \mathrm{)}$,
Zinc ($\mathrm{mg} / \mathrm{kg}$), Metals in Solids by ICP for REMAP
Arsenic ($\mathrm{mg} / \mathrm{kg}$), in Soil by AA
Lead (mg/kg), in Soil by AA
Selenium ($\mathrm{mg} / \mathrm{kg}$), in Solids by AA
Mercury ($\mathrm{mg} / \mathrm{kg}$), in Soil or Sediment
Cadmium ($\mathrm{mg} / \mathrm{kg}$), in Soil by AA
A-BHC (ug/kg), REMAP Pesticides in Soil by GC/EC
B-BHC (ug/kg), REMAP Pesticides in Soil by GC/EC G-BHC (ug/kg), REMAP Pesticides in Soil by GC/EC Aldrin (ug/kg), REMAP Pesticides in Soil by GC/EC Dieldrin (ug/kg), REMAP Pesticides in Soil by GC/EC Endrin (ug/kg), REMAP Pesticides in Soil by GC/EC p,p'-DDE (ug/kg), REMAP Pesticides in Soil by GC/EC p,p'-DDD (ug/kg), REMAP Pesticides in Soil by GC/EC p,p'-DDT (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1016 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1221 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1232 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1242 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1248 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1254 (ug/kg), REMAP Pesticides in Soil by GC/EC Aroclor 1260 (ug/kg), REMAP Pesticides in Soil by GC/EC Chlordane, technical (ug/kg), REMAP Pesticides in Soil by GC/EC Heptachlor (ug/kg), REMAP Pesticides in Soil by GC/EC Heptachlor Epoxide (ug/kg), REMAP Pesticides in Soil by GC/EC cis-Chlordane (ug/kg), REMAP Pesticides in Soil by GC/EC

Appendix B continued. Analytes measured in sediment samples:
trans-Chlordane (ug/kg), REMAP Pesticides in Soil by GC/EC
cis-Nonachlor (ug/kg), REMAP Pesticides in Soil by GC/EC
trans-Nonachlor (ug/kg), REMAP Pesticides in Soil by GC/EC
Oxychlordane (ug/kg), REMAP Pesticides in Soil by GC/EC
Atrazine (ug/kg), REMAP Pesticides in Soil by GC/EC
Diazinon (ug/kg), REMAP Pesticides in Soil by GC/EC
Metolachlor (ug/kg), REMAP Pesticides in Soil by GC/EC
Alachlor (ug/kg), REMAP Pesticides in Soil by GC/EC
Chlorpyrifos (ug/kg), REMAP Pesticides in Soil by GC/EC
Trifluralin (ug/kg), REMAP Pesticides in Soil by GC/EC
Propachlor (ug/kg), REMAP Pesticides in Soil by GC/EC
Hexachlorobenzene (ug/kg), REMAP Pesticides in Soil by GC/EC

Analytes measured in fish tissue samples:

Arsenic ($\mathrm{mg} / \mathrm{kg} \mathrm{)}$, Cadmium ($\mathrm{mg} / \mathrm{kg}$), Metals in Fish Tissue by ICAP for REMAP Lead ($\mathrm{mg} / \mathrm{kg}$), Metals in Fish Tissue by ICAP for REMAP Selenium ($\mathrm{mg} / \mathrm{kg}$), Metals in Fish Tissue by ICAP for REMAP Mercury ($\mathrm{mg} / \mathrm{kg}$), Mercury in Whole Fish
A-BHC ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC
B-BHC ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC
G-BHC (mg/kg), REMAP Pesticides in Fish by GC/EC
Aldrin ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Dieldrin ($\mathrm{mg} / \mathrm{kg} \mathrm{)} ,\mathrm{REMAP} \mathrm{Pesticides} \mathrm{in} \mathrm{Fish} \mathrm{by} \mathrm{GC/EC}$ Endrin ($\mathrm{mg} / \mathrm{kg} \mathrm{)} ,\mathrm{REMAP} \mathrm{Pesticides} \mathrm{in} \mathrm{Fish} \mathrm{by} \mathrm{GC/EC}$ p,p'-DDE ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC p,p'-DDD ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC p, p'-DDT ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1016 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1221 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1232 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1242 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1248 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Aroclor 1254 (mg/kg), REMAP Pesticides in Fish by GC/EC Aroclor 1260 ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Chlordane, technical (mg/kg), REMAP Pesticides in Fish by GC/EC Heptachlor ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Heptachlor Epoxide ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC cis-Chlordane ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC trans-Chlordane ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC cis-Nonachlor ($\mathrm{mg} / \mathrm{kg} \mathrm{)} ,\mathrm{REMAP} \mathrm{Pesticides} \mathrm{in} \mathrm{Fish} \mathrm{by} \mathrm{GC/EC}$ trans-Nonachlor ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Oxychlordane ($\mathrm{mg} / \mathrm{kg} \mathrm{)} ,\mathrm{REMAP} \mathrm{Pesticides} \mathrm{in} \mathrm{Fish} \mathrm{by} \mathrm{GC/EC}$ Diazinon ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Disulfoton ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Chlorpyrifos ($\mathrm{mg} / \mathrm{kg}$), REMAP Pesticides in Fish by GC/EC Hexachlorobenzene (mg/kg), REMAP Pesticides in Fish by GC/EC

Appendix C. Water, sediment, and fish tissue criteria, guidelines, and screening values.

Water. Water quality standards for total recoverable analytes for Acute and Chronic Aquatic Life Use are taken from the current Kansas Surface Water Quality Standards (KDHE Bureau of Water 2004), which for most analytes reported here are identical to the National Recommended Water Quality Criteria (USEPA Office of Water 2004).

For some analytes, absolute standards apply:

Analyte	KS ALU, Acute	KS ALUChronic
Diazinon $(\mathrm{ug} / \mathrm{L})$	--	0.08
Chloride $(\mathrm{mg} / \mathrm{L})$	--	
Chromium $(\mathrm{ug} / \mathrm{L})$	--	40
Arsenic $(\mathrm{ug} / \mathrm{L})$	340	150
Selenium $(\mathrm{ug} / \mathrm{L})$	20	5
Mercury $(\mathrm{ug} / \mathrm{L})$	0.4	0.77
Chlordane, technical (ug/L)	2.4	76
Alachlor $(\mathrm{ug} / \mathrm{L})$	8	8
Propachlor $(\mathrm{ug} / \mathrm{L})$	760	3
Atrazine $(\mathrm{ug} / \mathrm{L})$	--	0.041
Chlorpyrifos $(\mathrm{ug} / \mathrm{L})$	170	

For hardness-dependent metals, criteria are calculated using the following equation:
CMC or CCC = EXP[(M(LN(hardness)))-B],
where M and B are as listed in the following table:

Analyte	Acute: \mathbf{M}	Acute: B	Chronic: M	Chronic: B
Cadmium	1.0166	-3.924	0.7409	-4.719
Chromium III	.8190	3.7256	0.8190	0.6848
Copper	0.9422	-1.700	0.8545	-1.702
Lead	1.273	-1.460	1.273	-4.705
Nickel	0.8460	2.255	0.8460	0.0584
Silver	1.72	-6.59	--	--
Zinc	0.8473	0.884	0.8473	0.884

The usable range for hardness is 25 to 250 . At the recommendation of Ann Jacobs at EPA Region VII (pers. comm.), values below 25 were set to 25 and values over 250 set to 250 for these calculations.

For ammonia in water, the criteria are dependent on pH and Temperature:
The acute critereion or CMC (one-hour average in mg / L), where salmonid fish are not present, is:

CMC $=\left(0.411 /\left(10^{\wedge}(7.204-\mathrm{pH})+1\right)\right)+\left(58.4 /\left(10^{\wedge}(\mathrm{pH}-7.204)+1\right)\right)$

The chronic criterion or CCC (thirty-day average in mg / L), when fish early life stages are present, is:

```
CCC = [ (0.0577/(10^(7.688-pH)+1)) + (2.847/(10^(pH-7.688)+1))) ] *
[min (2.85|(1.45*10^(0.028*(25-T)))]
```

Sediment. Sediment quality guidelines that reflect probable effect concentrations (PECs; i.e., above which harmful effects are likely to be observed; MacDonald et al. 2000a). An asterisk (*) designates a reliable PEC (>20 samples and $>75 \%$ correct classification as toxic).

Substance	ConsensusBased PEC
Metals (in mg/kg DW)	
Arsenic	33
Cadmium	4.98
Chromium	111
Copper	149
Lead	128
Mercury	1.06
Nickel	48.6
Zinc	459
Polycyclic Aromatic Hydrocarbons (in $\mu \mathrm{g} / \mathrm{kg}$ DW)	
Anthracene	845
Fluorene	536
Naphthalene	561
Phenanthrene	1170
Benz[a]anthracene	1050
Benzo(a)pyrene	1450
Chrysene	1290
Fluoranthene	2230
Pyrene	1520
Total PAHs	22800
Polychlorinated Biphenyls (in $\mu \mathrm{g} / \mathrm{kg}$ DW)	
Total PCBs	676
Organochlorine Pesticides (in $\mu \mathrm{g} / \mathrm{kg}$ DW)	
Chlordane	17.6
Dieldrin	61.8
Sum DDD	28
Sum DDE	31.3
Sum DDT	62.90
Total DDTs	572
Endrin	207
Heptachlor Epoxide	16
Lindane (gamma-BHC)	4.99

Fish Tissue. Values for Recreational and Subsistence fish consumption for human health are taken from the National Guidance for Assessing Chemical Contaminant Data for Use In Fish Advisories, EPA 823-B-00-07 (USEPA Office of Water 2000). The values presented are not standards or benchmarks, but rather Screening Values for Defining Green Areas, where a Green Area is defined as one in which fish may be safely consumed at unrestricted levels. These values apply to fish tissue; note that the samples collected were analyzed for whole-fish.

ANALYTE	RECREATIONAL (in ppm)	SUBSISTENCE (in ppm)
Arsenic	0.26	0.00387
Cadmium	4.3	0.58
Selenium	4.0	2.9
Mercury	0.4	0.058
Lindane (Gamma-BHC)	0.0307	0.00378
Dieldrin	0.0025	0.000307
Endrin	1.2	0.147
Heptachlor Epoxide	0.00439	0.00054
Disulfoton	0.16	0.019
Chlorpyrifos	1.2	1.147
Hexachlorobenzene	0.025	0.00307
DDT Metabolites Sum *	0.117	0.017
Aroclors Sum **	0.02	0.00245
Chlordane Metabolites	0.114	
Sum ***		0.016

[^0]
Appendix D. Description, development, and modifications of the fish IBI.

I. Description. Description of the Fish Metrics and the original 12-metric Index of Biotic Integrity, modified from a program description written by Dave Peck, Corvallis OR.

The multimetric index of biotic integrity being developed and evaluated for use in the Region 7 R-EMAP studies currently consists of 12 metrics. Expectations for each metric were developed for three separate subregions within Region 7: The eastern lowlands (including the Flint Hills of Kansas), the western plains (including the Sand Hills of Nebraska), and the Ozark Plateau. For metrics based on the number of species, expectations are calibrated for stream size by using the $\log _{10}$ of the mean wetted stream width as a surrogate measure of size. For trophic-related metrics, expectations were based on the mean proportion from a set of hand-picked "reference" sites to provide for internal consistency in values and allow the final index to achieve the maximum possible value. For other proportional metrics, expectations were developed based on a specified percentile (generally the 90th) of the distribution of responses across all sites in a subregion.

For each metric, a score between 0 and 10 is assigned based on comparison to expectations. The final index is calculated as the sum of individual scores rescaled to range between 0 and 100 .

Metrics and expectations are presented below:

1. Native Species Richness

Lowland: expected no. spp. $=-0.0253+27.3492(\log ($ mean width $))$
Plains: expected no. spp. $=6.9545+9.4775(\log ($ mean width $))$
Ozarks: expected no. spp. $=-2.4385+23.6795(\log ($ mean width $))$
2. Native Family Richness

Lowland: \quad expected no. families $=0.7091+8.0361(\log ($ mean width $))$
Plains: expected no. families $=2.4368+4.4586(\log ($ mean width $))$
Ozarks: \quad expected no. families $=-0.5131+7.6850(\log ($ mean width $))$
3. Number of Individuals Collected

Lowland: \quad expected sq. root (abundance $)=-3.1424+49.8472(\log ($ mean width $))$
Plains: expected sq. root $($ abundance $)=6.2001+60.7819(\log ($ mean width $))$
Ozarks: \quad expected sq. root (abundance) $=-13.2154+41.2932(\log ($ mean width $))$
4. Sensitive Species Richness

Lowland: expected no. spp. $=-1.9554+7.3959(\log ($ mean width $))$
Plains: expected no. spp. $=0.7894+1.6925(\log ($ mean width $))$
Ozarks: expected no. spp. $=-6.2363+13.2891(\log ($ mean width $))$
5. Proportion of Tolerant Individuals

Lowland: $<=15 \%$
Plains: $<=20 \%$
Ozarks: 0%
6. Number of Native Benthic Species (including round bodied suckers)

Lowland: expected no. spp. $=-0.6077+9.2836(\log ($ mean width $))$
Plains: expected no. spp. $=1.2953+4.0517(\log ($ mean width $))$
Ozarks: expected no. spp. $=-1.3343+8.8601(\log ($ mean width $))$
7. Number of Native Water Column Species

Lowland: expected no. spp. $=-1.4780+13.9873(\log ($ mean width $))$
Plains: expected no. spp. $=2.0215+3.9725(\log ($ mean width $))$
Ozarks: expected no. spp. $=-8.8290+18.6853(\log ($ mean width $))$
8. Number of [Native] Long-lived species (expected life span of at least 4 years)

Lowland: expected no. spp. $=-1.9364+18.8643(\log ($ mean width $))$
Plains: expected no. spp. $=2.7958+5.5702(\log ($ mean width $))$
Ozarks: expected no. spp. $=-7.3159+18.5809(\log ($ mean width $))$
9. Proportion of Individuals of Introduced Species

All Subregions: 0%
10. Proportion of Individuals as Carnivores

Lowland: $\quad>=15 \%$
Plains: >=25\%
Ozarks: $\quad>=20 \%$
11. Proportion of Individuals as Insectivores and Invertivores

Lowland: $>=55 \%$
Plains: >=50\%
Ozarks: $\quad>=50 \%$
12. Proportion of Individuals as Omnivores and Herbivores

Lowland: <=25\%
Plains: <=25\%
Ozarks: $<=30 \%$
II. Development of the IBI. Description of the Fish IBI Development - summarized from electronic correspondence received from Dave Peck, Corvallis OR.

The fish regions were developed for Region VII (Kansas, Iowa, Nebraska, Missouri) based on knowledge of fish zoogeography and ancestral drainages in this part of the country, coupled with existing ecoregion boundaries. The Kansas Flint Hills and Nebraska Sand Hills presented some difficulty with their unique characteristics, but there were not enough sites to treat them as independent regions. The Missouri Ozarks also had a small number of sites, but were treated as an independent region based on the high number of endemics.

The reference sites did not play a direct role in selection criteria for IBI scores, but they were included along with the random sites in the metric evaluation process. Each possible metric was subjected to a series of tests:

- Range test (dropped metrics with a small range, or with a large range but a high proportion of "zero" scores)
- Signal:noise test comparing among-site variance to repeat-site variance. (dropped metrics that could not distinguish between sites)
- Spearman rank correlations with scatterplots of metric vs. known stressors such as nutrients, substrate, riparian cover, etc. (dropped metrics that showed no linear correlations or other visible relationships to any stressors)

Consideration was also given to including a number of different types of metrics, i.e., taxon richness, tolerance, feeding guilds, etc. Most metrics were scored on a linear scale using
combined data from all sites (both random and reference) in a given region. The $90^{\text {th }}$ percentile was the cutoff for scoring a 10 ; the $80^{\text {th }}$ for scoring a 9 , and so on. For negative metrics the relationship was reversed. An exception was for trophic metrics. In this case, reference sites were used to provide an "expected" proportion (=mean) of piscivores, invertivores, etc, since these are internally consistent and must sum to 100%. So a "reference" stream might have the following trophic composition: 15% piscivores, 50% invertivores, and 30% omnivores. With this approach, the metrics do not presume that "more is better," but addresses more of a "trophic balance" (or lack thereof). Each metric is identified in parentheses as "positive" (+) or "negative" (-).

1. Native Species Richness (+)
2. Native Family Richness (+)
3. Number of Individuals Collected (+)
4. Sensitive Species Richness (+)
5. Proportion of Tolerant Individuals (-)
6. Number of Native Benthic Species (including round bodied suckers) (+)
7. Number of Native Water Column Species (+)
8. Number of Long-lived species (expected life span of at least 4 years) (+)
9. Proportion of Individuals of Introduced Species (-)
10. Proportion of Individuals as Carnivores (+)
11. Proportion of Individuals as Insectivores and Invertivores (+)
12. Proportion of Individuals as Omnivores and Herbivores (-)
III. Modifications of the IBI. Peck has produced two derivative versions of the original 12metric IBI. One has 11 metrics and one has 8. In each case, the metrics (each scaled 0-10) are summed, multiplied by 10, and divided by the number of metrics used so that the final scale ranges from 0 to 100. The eight-metric IBI is the one used in this report.

Metric	$12-\mathrm{m}$ IBI	$11-\mathrm{m}$ IBI	$8-\mathrm{m}$ IBI
1. Native Species Richness	X	X	X
2. Native Family Richness	X	X	X
3. Number of Individuals Collected	X	X	-
4. Sensitive Species Richness	X	X	X
5. Proportion of Tolerant Individuals	X	X	X
6. Number of Native Benthic Species	X	X	X
7. Number of Native Water Column Species	X	X	-
8. Number of Long-lived species	X	X	X
9. Proportion of Individuals of Introduced Species	X	X	X
10. Proportion of Individuals as Carnivores	X	X	X
11. Proportion of Individuals as Insectivores and Invertivores	X	-	-
12. Proportion of Individuals as Omnivores and Herbivores	X	X	-

Appendix E. Water chemistry, sediment chemistry, and fish tissue chemistry summary from reference sites.

There were 30 reference sites in all, but not every site was analyzed for every parameter. The first column after the analyte name shows how many samples were analyzed. Nondetects are "truly" low values, known to be somewhere between zero (analyte not present in sample) and the reporting limit. The values assigned to nondetects here are the reporting limits, but reporting limits were not necessarily uniform from one sample to the next - especially for sediment chemistry. This can lead to difficulties in interpretation of results, and in this dataset, it does. For a given analyte, the range of "reporting limit" values assigned to nondetects in a number of cases overlapped with the range of "real" measured values. The table below shows summary statistics for the "whole" population (including nondetects); this is an estimate of the analyte levels in the reference population as a whole. The table also shows summary statistics for the "measured" population (excluding nondetects); this more certain number represents the analyte levels ONLY for that subset of the population in which the analyte was measurably present. Note that if all data were nondetect or all were detect, there are values only in one half of the row. Note also that data for analyte HF02 (Conductivity) were discarded.

OO	$\begin{aligned} & \stackrel{\pi}{\grave{N}} \\ & \stackrel{N}{\pi} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{5} \end{aligned}$	$\overline{\bar{T}}$ $\stackrel{1}{\underline{E}}$	$\begin{aligned} & \overline{\widetilde{N}} \\ & \text { Ni } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \text { in } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \\ & \stackrel{N}{N} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$											
WA10	Organic Nitrogen (mg/L), by Calculation	30	0.08	0.22	0.56	0.76	1.55	0.57	0.40	24	0.10	0.48	0.63	0.83	1.55	0.68	0.36	6
WC33	Diazinon (ug/L), in Water	29	0.03	0.03	0.40	0.40	0.40	0.29	0.17	0								29
WF01	Temperature (Deg C), REMAP Field Parameters	30								30	13.60	22.00	24.00	25.50	28.00	23.41	3.34	0
WF04	Flow (CFS), REMAP Field Parameters	29								29	0.00	0.00	0.98	6.20	284.30	17.37	56.31	0
WF05	pH (SU), REMAP Field Parameters	30								30	7.80	8.10	8.35	8.50	8.80	8.31	0.26	0
WG03	Alkalinity (bicarbonate, mg / L), in Water	30								30	75.90	175.00	206.00	269.00	466.00	224.43	80.20	0
WG11	Total Nitrogen (mg/L), by Calculation	30								30	0.09	0.60	0.75	1.96	8.28	1.55	1.74	0
WG12	Chloride (mg / L), in Water	30								30	3.70	6.80	15.55	48.70	364.00	55.74	91.28	0

OO		$\overline{\overline{\bar{x}}}$	$\underline{\bar{N}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \text { N్囚 } \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \text { ìn } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{م} \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \underset{~}{㐅} \\ & \underline{\underline{E}} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\bar{W}} \\ & \stackrel{\rightharpoonup}{ٍ} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$					$\begin{aligned} & \overleftarrow{~} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & \stackrel{N}{\Omega} \end{aligned}$				
WG17	Dissolved Oxygen (mg/L), REMAP Field Parameters	30								30	3.10	4.70	6.40	8.10	10.70	6.32	1.92	0
WG30	Turbidity (NTU)	30	0.60	1.00	4.95	10.90	41.50	7.50	8.28	26	0.60	2.70	6.95	11.40	41.50	8.50	8.47	4
WG31	Hardness (as CaCO3, mg / L), in Water by Calculation	30								30	81.60	186.00	250.50	359.00	$\begin{array}{r} 1040.0 \\ 0 \\ \hline \end{array}$	312.32	205.21	0
WM01	Silver (ug/L), in Water	30	25.00	25.00	25.00	25.00	25.00	25.00	0.00	0								30
WM04	Barium (ug/L), in Water	30				168.00				30	56.10	99.30	126.00	168.00	309.00	146.05	71.73	0
WM08	Chromium (ug/L), in Water	30	15.00	15.00	15.00	15.00	15.00	15.00	0.00	0								30
WM09	Copper (ug/L), in Water	30	5.00	5.00	5.00	5.00	6.28	5.20	0.42	6	5.66	5.85	6.02	6.25	6.28	6.01	0.24	24
WM13	Nickel (ug/L), in Water	30	20.00	20.00	20.00	20.00	20.00	20.00	0.00	0								30
WM20	Zinc (ug/L), in Water	30	25.00	25.00	25.00	46.50	172.00	42.09	31.96	13	28.40	42.30	51.90	75.80	172.00	64.45	38.90	17
WM21	Calcium (mg/L), in Water	30								30	26.00	62.60	74.15	101.00	300.00	90.95	57.17	0
WM22	Magnesium (mg/L), in Water	30								30	3.00	8.91	13.85	22.40	86.50	20.75	20.71	0
WM23	Sodium (mg/L), in Water	30								30	7.50	10.00	16.45	54.40	271.00	50.71	68.64	0
WM24	Potassium (mg/L), in Water	30	2.00	2.47	3.38	6.64	23.60	5.28	4.84	27	2.21	2.59	3.56	7.87	23.60	5.64	4.97	3
WM27	Arsenic (ug/L), in Water	30	2.00	2.00	2.00	3.54	14.80	3.53	3.01	12	2.18	3.23	4.53	7.57	14.80	5.84	3.78	18
WM28	Cadmium (ug/L), in Water	30	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0								30
WM30	Lead in Water (Lead, ug/L)	30	1.00	1.93	2.77	4.61	13.30	3.71	2.60	28	1.44	2.11	2.93	5.11	13.30	3.90	2.59	2

O		$\stackrel{\bar{\top}}{\stackrel{1}{c}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\underline{E}}{\bar{E}} \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \\ & \stackrel{1}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{\overline{1}} \\ & \stackrel{1}{\circ} \\ & \text { గి } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\hat{N}} \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{x}{\widetilde{x}} \\ & \underset{\sim}{n} \end{aligned}$											\# ¢ \# 0 0 0 0 1
WM32	Selenium (ug/L), in Water	30	2.00	2.00	2.00	2.00	3.14	2.12	0.30	5	2.38	2.51	2.69	2.96	3.14	2.74	0.31	25
WM34	Mercury (ug/L), in Water	30	0.10	0.10	0.20	0.20	0.58	0.18	0.09	1	0.58	0.58	0.58	0.58	0.58	0.58		29
WM38	Barium, Dissolved (ug/L), in Water	28								28	47.90	98.80	129.00	162.00	316.00	141.32	65.55	0
WM42	Chromium, Dissolved (ug/L), in Water	28	4.00	4.00	4.00	4.00	13.50	4.36	1.79	2	4.47	4.47	8.99	13.50	13.50	8.99	6.39	26
WM43	Copper, Dissolved (ug/L), in Water	28	2.00	2.00	2.00	2.00	4.71	2.10	0.51	2	2.19	2.19	3.45	4.71	4.71	3.45	1.78	26
WM44	Iron, Dissolved (ug/L), in Water	28	29.00	29.00	29.00	29.00	51.80	30.30	4.66	3	32.60	32.60	39.10	51.80	51.80	41.17	9.77	25
WM45	Manganese, Dissolved (ug/L), in Water	28	2.00	10.70	39.10	71.45	266.00	57.59	66.98	27	2.31	10.70	41.30	72.60	266.00	59.64	67.35	1
WM47	Nickel, Dissolved (ug/L), in Water	28	6.00	6.00	6.00	6.00	6.00	6.00	0.00	0								28
WM50	Selenium, Dissolved (ug/L), in Water	28	2.00	2.00	2.00	2.00	18.80	2.65	3.17	4	2.37	2.41	2.48	10.66	18.80	6.53	8.18	24
WM54	Zinc, Dissolved (ug/L), in Water	28	4.00	4.00	7.49	17.80	58.20	13.19	13.33	16	5.86	10.57	14.65	27.05	58.20	20.08	14.21	12
WM55	Calcium, Dissolved (mg / L), in Water	28								28	25.90	54.65	71.15	88.15	215.00	82.14	43.20	0
WM56	Magnesium, Dissolved (mg/L), in Water	28								28	3.09	6.58	14.05	19.90	67.90	16.74	14.03	0
WM60	Arsenic, Dissolved (ug/L), in Water	28	2.00	2.00	2.00	2.45	9.02	2.82	1.87	8	2.07	3.12	3.96	6.92	9.02	4.89	2.58	20
WM61	Cadmium, Dissolved (ug/L), in Water	28	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0								28
WM63	Lead, Dissolved (ug/L), in Water	28	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0								28
WM65	Silver, Dissolved (ug/L), in Water	28	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0								28

O		$\underset{\bar{N}}{\substack{1}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$	$\begin{aligned} & \overline{\bar{H}} \\ & \text { Nid } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{N}{n} \\ & \end{aligned}$		$\begin{aligned} & \overline{\overline{1}} \\ & \stackrel{1}{\sqrt{x}} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{4} \end{aligned}$			$\begin{aligned} & \text { U } \\ & \text { di } \\ & \text { O} \\ & \text { N } \\ & \text {. } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { di } \\ & \text { di } \\ & \dot{0} \\ & 0 \end{aligned}$					
WM68	Mercury, Dissolved (ug/L), in Water	28	0.10	0.10	0.20	0.20	7.29	0.42	1.35	1	7.29	7.29	7.29	7.29	7.29	7.29		27
WP24	Chlordane, technical (ug/L), Pesticides in Water	29	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0								29
WP27	Alachlor (ug/L), Pesticides in Water	29	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0								29
WP28	Propachlor (ug/L), Pesticides in Water	29	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0								29
WP31	Atrazine (ug/L), Pesticides in Water	29	3.00	3.00	3.00	3.00	3.00	3.00	0.00	0								29
WP32	Trifluralin (ug/L), Pesticides in Water	29	0.03	0.03	0.03	0.03	0.03	0.03	0.00	0								29
WP43	Metolachlor (ug/L), Pesticides in Water	29	0.05	0.05	0.50	0.50	0.50	0.36	0.21	0								29
WQ02	Chlorpyrifos (ug/L), Pesticides in Water	29	0.05	0.05	0.05	0.05	0.05	0.05	0.00	0								29
WT01	Ammonia, as Nitrogen (mg/L), in Water	30	0.06	0.06	0.10	0.10	0.65	0.18	0.22	3	0.08	0.08	0.08	0.13	0.13	0.10	0.03	27
WT02	Nitrate+Nitrite, as Nitrogen (mg / L), in Water	30	0.03	0.03	0.10	1.73	7.93	0.99	1.76	21	0.03	0.09	0.38	2.34	7.93	1.41	1.97	9
WT03	Total Kjeldahl Nitrogen (mg / L), in Water	30	0.08	0.22	0.56	0.76	1.55	0.58	0.41	25	0.10	0.48	0.63	0.78	1.55	0.67	0.38	5
WT04	Total Phosphorus (mg / L), in Water	30	0.02	0.10	0.10	0.14	0.33	0.13	0.08	11	0.03	0.08	0.12	0.28	0.33	0.16	0.11	19
WT12	Sulfate (mg / L), in Water	30								30	8.60	21.20	40.60	72.30	840.00	131.06	217.97	0
HP39	Decachlorobiphenyl (\% Rec), Pesticides in Sediment	2								2	82.10	82.10	97.05	112.00	112.00	97.05	21.14	0
SC30	Disulfoton (ug/kg), Pesticides in	30	12.00	14.00	19.00	88.00	0.00	67.89	89.14	0								30

O		＝	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{E} \\ & \underline{E} \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \\ & \text { N్ } \end{aligned}$	产	$\begin{aligned} & \overline{\bar{W}} \\ & \stackrel{N}{n} \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \underset{㐅}{㐅} \\ & \underset{\underline{E}}{2} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\bar{W}} \\ & \stackrel{\rightharpoonup}{ٍ} \end{aligned}$	$\begin{aligned} & \overline{\bar{W}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\nabla} \end{aligned}$									
	Sediment																	
SG07	Percent Solids（\％）	30								30	34.10	58.50	68.25	73.10	83.60	65.73	11.09	0
SG31	Total Organic Carbon （\％），in Sediment	30	0.09	0.12	0.57	1.30	3.30	0.90	0.90	23	0.11	0.51	0.77	1.70	3.30	1.14	0.90	7
SM01	Silver（mg／kg），Metals in Sediment	30	2.00	2.00	2.00	2.00	2.00	2.00	0.00	0								30
SM04	Barium（ $\mathrm{mg} / \mathrm{kg}$ ）， Metals in Sediment	30								30	18.30	76.70	100.50	140.00	347.00	114.19	67.61	0
SM08	Chromium（ $\mathrm{mg} / \mathrm{kg}$ ）， Metals in Sediment	30	1.75	6.05	9.70	14.70	20.50	10.02	5.82	28	1.75	6.57	10.05	15.35	20.50	10.60	5.60	2
SM09	Copper（mg／kg）， Metals in Sediment	30	1.00	4.57	6.56	9.16	13.10	6.66	3.30	27	1.82	5.29	6.88	9.69	13.10	7.22	2.98	3
SM13	Nickel（mg／kg）， Metals in Sediment	30	2.00	9.03	10.25	16.00	22.10	11.55	5.59	28	2.26	9.20	10.70	16.15	22.10	12.23	5.13	2
SM20	Zinc（mg／kg），Metals in Sediment	30	5.00	24.30	31.95	45.10	437.00	45.46	75.20	28	5.55	26.10	33.70	45.45	437.00	48.34	77.10	2
SM27	Arsenic（mg／kg），in Sediment	30	0.50	2.51	3.45	7.07	11.10	4.68	2.87	27	0.67	2.81	4.59	7.30	11.10	5.03	2.79	3
SM30	Lead（ $\mathrm{mg} / \mathrm{kg}$ ），in Sediment	30	0.50	0.71	2.30	5.08	29.80	4.62	6.24	25	0.52	1.80	2.55	9.33	29.80	5.45	6.54	5
SM32	Selenium（ $\mathrm{mg} / \mathrm{kg}$ ），in Sediment	30	0.50	0.50	0.50	0.50	0.82	0.52	0.07	2	0.75	0.75	0.78	0.82	0.82	0.78	0.05	28
SM34	Mercury（ $\mathrm{mg} / \mathrm{kg} \mathrm{)}$, Sediment	30	0.00	0.00	0.01	0.02	0.04	0.01	0.01	22	0.00	0.01	0.01	0.02	0.04	0.01	0.01	8
SM57	Cadmium（ $\mathrm{mg} / \mathrm{kg}$ ），in Sediment	30	0.05	0.13	0.26	0.51	500.00	17.08	91.21	24	0.06	0.20	0.32	0.58	3.51	0.51	0.69	6
SP01	A－BHC（ug／kg）， Pesticides in Sediment	30	0.60	0.81	0.88	1.10	5.30	1.17	0.92	0								30
SP02	B－BHC（ug／kg）， Pesticides in Sediment	30	2.00	2.70	2.95	3.50	18.00	3.92	3.13	0								30

Ọ	$\begin{aligned} & \cong \\ & \frac{\rrbracket}{\pi} \\ & \frac{\pi}{\pi} \end{aligned}$	$\stackrel{\bar{N}}{\substack{1}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\overline{1}}{\bar{E}} \end{aligned}$	$\begin{aligned} & \overline{\bar{W}} \\ & \stackrel{1}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \\ & \text { ì } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \\ & \stackrel{N}{N} \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \underset{~}{㐅} \\ & \underline{\underline{E}} \end{aligned}$	$\begin{aligned} & \overline{\bar{\top}} \\ & \stackrel{1}{\tilde{W}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{4} \end{aligned}$			$\begin{aligned} & \text { U } \\ & \mathbf{U} \\ & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	U 0 0 0 0 0 0					¢ 0 0 0 0 0 0 1
SP04	G-BHC (ug/kg), Pesticides in Sediment	30	0.80	0.99	1.10	1.30	6.30	1.46	1.13	0								30
SP05	Aldrin (ug/kg), Pesticides in Sediment	30	1.20	1.60	1.75	2.10	11.00	2.35	1.91	0								30
SP06	Dieldrin (ug/kg), Pesticides in Sediment	30	1.20	1.60	1.75	2.10	11.00	2.35	1.91	0								30
SP10	Endrin (ug/kg), Pesticides in Sediment	30	1.60	2.10	2.35	2.80	14.00	3.11	2.44	0								30
SP13	$\mathrm{p}, \mathrm{p}-\mathrm{DDE}$ (ug/kg), Pesticides in Sediment	30	2.00	2.70	2.95	3.50	18.00	3.92	3.13	0								30
SP14	p,p-DDD (ug/kg), Pesticides in Sediment	30	1.60	2.10	2.35	2.80	14.00	3.11	2.44	0								30
SP15	p,p-DDT (ug/kg), Pesticides in Sediment	30	2.00	2.70	2.95	3.50	18.00	3.92	3.13	0								30
SP17	Aroclor 1016 (ug/kg), Pesticides in Sediment	30	40.00	54.00	58.50	70.00	350.00	77.92	61.08	0								30
SP18	Aroclor 1221 (ug/kg), Pesticides in Sediment	30	40.00	60.00	71.00	88.00	440.00	90.39	74.06	0								30
SP19	Aroclor 1232 (ug/kg), Pesticides in Sediment	30	24.00	29.00	37.00	54.60	200.00	52.99	44.35	0								30
SP20	Aroclor 1242 (ug/kg), Pesticides in Sediment	30	24.00	29.00	37.00	54.60	200.00	52.99	44.35	0								30
SP21	Aroclor 1248 (ug/kg), Pesticides in Sediment	30	40.00	54.00	58.50	70.00	350.00	78.05	61.17	0								30

O		$\stackrel{\overline{\bar{T}}}{\substack{1}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \dot{\overline{1}} \end{aligned}$	$\begin{aligned} & \overline{\bar{W}} \\ & \stackrel{1}{N} \\ & \underset{\alpha}{2} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{2} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\hat{N}} \\ & \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \underset{~}{㐅} \\ & \underline{\underline{E}} \end{aligned}$	$\begin{aligned} & \overline{\bar{\top}} \\ & \stackrel{1}{\tilde{W}} \\ & \stackrel{0}{0} \end{aligned}$				$\begin{aligned} & \text { U } \\ & \mathbf{U} \\ & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	U 0 0 0 0 0 0					n 0 0 0 0 0 0 1 1
SP22	Aroclor 1254 (ug/kg), Pesticides in Sediment	30	20.00	27.00	29.50	35.00	180.00	39.16	31.29	0								30
SP23	Aroclor 1260 (ug/kg), Pesticides in Sediment	30	20.00	27.00	29.50	35.00	180.00	39.16	31.29	0								30
SP24	Chlordane, technical (ug/kg), Pesticides in Sediment	30	7.20	8.10	9.55	12.00	53.00	13.09	10.17	0								30
SP25	Heptachlor (ug/kg), Pesticides in Sediment	30	0.95	1.10	1.30	1.64	7.00	1.83	1.44	0								30
SP26	Heptachlor Epoxide (ug/kg), Pesticides in Sediment	30	1.20	1.60	1.75	2.10	11.00	2.35	1.91	0								30
SP27	cis-Chlordane (ug/kg), Pesticides in Sediment	30	1.20	1.93	3.40	4.00	21.00	3.84	3.53	0								30
SP28	trans-Chlordane (ug/kg), Pesticides in Sediment	30	1.20	1.93	3.40	4.00	21.00	3.84	3.53	0								30
SP29	cis-Nonachlor (ug/kg), Pesticides in Sediment	30	1.20	1.93	3.40	4.00	21.00	3.84	3.53	0								30
SP30	trans-Nonachlor (ug/kg), Pesticides in Sediment	30	1.20	1.93	3.40	4.00	21.00	3.84	3.53	0								30
SP31	Oxychlordane (ug/kg), Pesticides in Sediment	30	1.20	1.93	3.40	4.00	21.00	3.84	3.53	0								30
SP45	Atrazine (ug/kg), Pesticides in Sediment	30	72.00	86.00	115.00	164.00	600.00	158.57	132.07	0								30
SP52	Diazinon (ug/kg), Pesticides in Sediment	30	16.00	25.70	55.00	67.00	350.00	61.46	59.62	0								30

O		$\stackrel{\bar{T}}{\stackrel{T}{\Sigma}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \bar{\pi} \\ & \dot{1} \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\hat{N}} \\ & \end{aligned}$			$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			$\begin{aligned} & \text { U } \\ & \text { む̃ } \\ & \text { O} \\ & \dot{H} \\ & \text { N } \end{aligned}$						
SP67	Metolachlor (ug/kg), Pesticides in Sediment	30	20.00	27.00	29.50	35.00	180.00	39.16	31.29	0								30
SP68	Alachlor (ug/kg), Pesticides in Sediment	30	6.00	8.19	9.35	11.00	63.00	15.12	15.43	0								30
SP86	Chlorpyrifos (ug/kg), Pesticides in Sediment	30	1.20	1.40	1.90	2.73	10.00	2.65	2.20	0								30
SQ16	Trifluralin (ug/kg), Pesticides in Sediment	30	1.20	1.93	4.10	5.00	26.00	4.59	4.42	0								30
SQ19	Propachlor (ug/kg), Pesticides in Sediment	30	8.00	10.90	11.60	14.00	70.00	15.54	12.22	0								30
SS48	Hexachlorobenzene (ug/kg), Pesticides in Sediment	30	0.40	0.64	1.40	1.70	8.80	1.54	1.50	1	0.40	0.40	0.40	0.40	0.40	0.40		29
TM03	Arsenic (mg/kg), Metals in Fish Tissue	23	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0								23
TM06	Cadmium (mg/kg), Metals in Fish Tissue	23	0.06	0.06	0.06	0.07	0.16	0.07	0.03	6	0.07	0.07	0.10	0.15	0.16	0.11	0.04	17
TM14	Lead ($\mathrm{mg} / \mathrm{kg}$), Metals in Fish Tissue	23	0.17	0.17	0.17	0.17	0.21	0.17	0.01	1	0.21	0.21	0.21	0.21	0.21	0.21		22
TM16	Selenium (mg/kg), Metals in Fish Tissue	23	0.54	0.82	1.17	1.35	2.58	1.24	0.51	23	0.54	0.82	1.17	1.35	2.58	1.24	0.51	0
TM34	Mercury (mg/kg), Mercury in Whole Fish	23	0.02	0.04	0.05	0.07	0.12	0.06	0.03	20	0.02	0.05	0.06	0.08	0.12	0.06	0.03	3
TP01	A-BHC (mg/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0								23
TP02	B-BHC ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0								23
TP04	G-BHC ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0								23

O	$\begin{aligned} & \stackrel{\otimes}{\star} \\ & \frac{\grave{\pi}}{\pi} \\ & \hline \end{aligned}$	$\underset{\text { ָ̄ }}{\substack{\text { ¢ }}}$	$\overline{\bar{T}}$ $\stackrel{1}{\underline{1}}$	$\begin{aligned} & \overline{\bar{N}} \\ & \text { Ni } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{\overline{1}} \\ & \stackrel{1}{\circ} \\ & \text { مٌ } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{\hat{N}} \\ & \end{aligned}$	$\begin{aligned} & \overline{\widetilde{x}} \\ & \underset{㐅}{㐅} \\ & \underset{\varepsilon}{6} \end{aligned}$		$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	\# ¢ ¢ ¢ it \pm			U 0 0 0 0 0 0	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{ \pm}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{N}{\Omega} \end{aligned}$				¢ 0 0 0 0 0 0 1 1
TP05	Aldrin ($\mathrm{mg} / \mathrm{kg} \mathrm{)}$, Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.02	0.01	0.00	0								23
TP06	Dieldrin ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.00	0.00	2	0.01	0.01	0.01	0.01	0.01	0.01	0.00	21
TP10	Endrin (mg/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0								23
TP13	p,p-DDE (ug/kg), Pesticides in Fish	23	0.01	0.01	0.01	0.01	0.04	0.01	0.01	2	0.02	0.02	0.03	0.04	0.04	0.03	0.02	21
TP14	p,p-DDD (ug/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00		22
TP15	p,p-DDT (ug/kg), Pesticides in FIsh	23	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0								23
TP17	Aroclor 1016 (mg/kg), Pesticides in Fish	23	0.10	0.10	0.10	0.20	0.20	0.14	0.05	0								23
TP18	Aroclor 1221 (mg/kg), Pesticides in Fish	23	0.05	0.05	0.05	0.25	0.25	0.12	0.10	0								23
TP19	Aroclor 1232 (mg/kg), Pesticides in Fish	23	0.08	0.08	0.08	0.10	0.16	0.09	0.02	0								23
TP20	Aroclor 1242 (mg/kg), Pesticides in Fish	23	0.04	0.04	0.04	0.10	0.10	0.06	0.03	0								23
TP21	Aroclor 1248 (mg/kg), Pesticides in Fish	23	0.04	0.04	0.04	0.20	0.20	0.10	0.08	0								23
TP22	Aroclor 1254 (mg/kg), Pesticides in Fish	23	0.03	0.03	0.03	0.10	0.16	0.07	0.05	0								23
TP23	Aroclor 1260 (mg/kg), Pesticides in Fish	23	0.02	0.02	0.02	0.10	0.10	0.05	0.04	0								23
TP24	Chlordane, technical ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.03	0.03	0.03	0.03	0.06	0.03	0.01	0								23
TP25	Heptachlor (mg/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0								23
TP26	Heptachlor Epoxide ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0								23

O		$\stackrel{\overline{\bar{T}}}{\substack{\text { ¢ }}}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{L}{E} \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \text { N్口 } \end{aligned}$	$\begin{aligned} & \overline{\bar{\circ}} \\ & \stackrel{1}{\circ} \\ & \text { مٌ } \end{aligned}$	$\begin{aligned} & \overline{\bar{T}} \\ & \stackrel{1}{n} \\ & \stackrel{2}{2} \end{aligned}$			$\begin{aligned} & \overline{\bar{N}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$				U む O 0 0 0					
TP27	cis-Chlordane ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0								23
TP28	trans-Chlordane ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0								23
TP29	cis-Nonachlor ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0								23
TP30	trans-Nonachlor (mg/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.01	0.00	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21
TP32	Oxychlordane ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0								23
TP35	Diazinon (mg/kg), Pesticides in Fish	8	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0								8
TP36	Disulfoton ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.10	0.10	0.20	0.07	0.06	0								23
TP47	Chlorpyrifos (mg/kg), Pesticides in Fish	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0								23
TP76	Hexachlorobenzene ($\mathrm{mg} / \mathrm{kg}$), Pesticides in Fish	23	0.00	0.00	0.00	0.01	0.01	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00		22

Appendix F. Analytes in water: physical parameters, general chemistry, metals, and biocides.

Two populations are represented in the following graphs and summaries: reference sites, and randomly selected sites. Nondetects are included as their reporting limit for both random and reference datasets. For each analyte, the Cumulative Distribution Function (CDF) graph represents the expected distribution of values in Kansas wadeable streams, as derived from random sites. The vertical bar superimposed on the CDF represents the median value from the reference population. The CDF is represented by a solid line, with dotted lines showing its 95% confidence limits. Not every analyte was measured for every site; a value on the y -axis shows the number of Kansas wadeable stream kilometers to which the CDF estimate applies, and a note below indicates the number of km represented by detect (measured) versus nondetect (reporting-limit) values. For reference-site medians, a solid bar indicates that more than half of the values were measured reported values, whereas a dotted bar indicates that at least half of the values are reporting limits derived from nondetects. This gives some indication of the "trustworthiness" of the measure. In cases for which there are two or fewer distinct values in the random population, a CDF is not plotted, and only the maximum value is reported (as text).

ANALYTES IN WATER: PHYSICAL PARAMETERS AND GENERAL CHEMISTRY

Flow

Flow (Random): Detect $=20260 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$. Note logarithmic scale for Flow.

Water Temperature

Water Temperature (Random): Detect $=20322 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Water pH

Water pH (Random): Detect $=20794$ km / Nondetect $=0$ km

Alkalinity in water $($ Random $)$: Detect $=21062 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Hardness in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Oxygen in Water

Dissolved Oxygen in Water (Random): Detect $=20794 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Water Turbidity

Water Turbidity (Random): Detect $=20117 \mathrm{~km} /$ Nondetect $=945 \mathrm{~km}$

Organic Nitrogen in Water

Organic Nitrogen in Water (Random): Detect $=19110 \mathrm{~km} /$ Nondetect $=2219 \mathrm{~km}$

Total Nitrogen in Water

Total Nitrogen in Water (Random): Detect = 20322 km / Nondetect = 1007 km Scale for Total Nitrogen does not show one outlier value of 293.

Nitrate+Nitrite in Water (Random): Detect $=15678$ km / Nondetect $=5651$ km Scale for Nitrate + Nitrite does not show outlier value of 291.

Ammonia (as Nitrogen) in Water

Ammonia (as Nitrogen) in Water (Random): Detect = 9760 km $/$ Nondetect $=11569 \mathrm{~km}$

Total Kjeldahl Nitrogen in Water

Total Kjeldahl Nitrogen in Water (Random): Detect $=19110 \mathrm{~km} /$ Nondetect $=2219 \mathrm{~km}$

Total Phosphorus in Water

Total Phosphorus in Water (Random): Detect $=10624 \mathrm{~km} /$ Nondetect $=10705 \mathrm{~km}$

Chloride in Water

Chloride in Water (Random): Detect $=21062 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$ Scale for Chloride does not show one outlier value of 1730.

Sulfate in Water

Sulfate in Water (Random): Detect $=21062 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

ANALYTES IN WATER:
 METALS

Arsenic in Water

Arsenic in Water (Random): Detect $=16151 \mathrm{~km} /$ Nondetect $=5178 \mathrm{~km}$

Dissolved Arsenic in Water

Dissolved Arsenic in Water (Random): Detect $=12371 \mathrm{~km} /$ Nondetect $=5178 \mathrm{~km}$

Barium in Water

Barium in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Barium in Water

Dissolved Barium in Water (Random): Detect $=17549 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Cadmium in Water

Random $\quad 21329 \mathrm{~km} \quad$ all values $\leq 1 \mathrm{ug} / \mathrm{L}$
Reference $\quad 30 / 30$ nd \quad median $=1 \mathrm{ug} / \mathrm{L}$
Cadmium in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Dissolved Cadmium in Water

Random $\quad 17282 \mathrm{~km} \quad$ all values $\leq 1 \mathrm{ug} / \mathrm{L}$
Reference $\quad 28 / 30$ nd median $=1 \mathrm{ug} / \mathrm{L}$
Dissolved Cadmium in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=17282 \mathrm{~km}$

Calcium in Water

Calcium in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Calcium in Water

Dissolved Calcium in Water (Random): Detect $=17549 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Chromium in Water

Random $\quad 21329$ km all values $\leq 20.5 \mathrm{ug} / \mathrm{L}$
Reference $\quad 30 / 30$ nd median $=15$
Chromium in Water (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Dissolved Chromium in Water

Dissolved Chromium in Water (Random): Detect $=2362 \mathrm{~km} /$ Nondetect $=15187 \mathrm{~km}$

Copper in Water

Copper in Water (Random): Detect $=5098 \mathrm{~km} /$ Nondetect $=16231 \mathrm{~km}$

Dissolved Copper in Water

Dissolved Copper in Water (Random): Detect $=1069 \mathrm{~km} /$ Nondetect $=16480 \mathrm{~km}$

Dissolved Iron in Water

Dissolved Iron in Water (Random): Detect $=3226$ km $/$ Nondetect $=14323$ km
Lead in Water

Lead in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Lead in Water

Random $\quad 17549$ km all values ≤ 1.07 ug/L
Reference $\quad 28 / 30$ nd median $=1$
Dissolved Lead in Water (Random): Detect $=267 \mathrm{~km} /$ Nondetect $=17282 \mathrm{~km}$

Magnesium in Water

Magnesium in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Magnesium in Water (Random): Detect $=17549 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Dissolved Manganese in Water

Dissolved Manganese in Water (Random): Detect $=17549 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$
Scale for dissolved manganese does not show last three outlier values of 2310, 2430, and 2690.
Mercury in Water

Mercury in Water (Random): Detect $=1809 \mathrm{~km} /$ Nondetect $=19520 \mathrm{~km}$

Dissolved Mercury in Water

Dissolved Mercury in Water (Random): Detect = $472 \mathrm{~km} /$ Nondetect $=17077 \mathrm{~km}$ Scale for Mercury does not show single outlier value of 7.29.

Nickel in Water

Random $\quad 21329 \mathrm{~km} \quad$ all values $\leq 20 \mathrm{ug} / \mathrm{L}$
Reference $\quad 30 / 30$ nd median=20
Nickel in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Dissolved Nickel in Water

Random $\quad 17549$ km all values below $8.56 \mathrm{ug} / \mathrm{L}$
Reference $\quad 28 / 30$ nd median $=6$
Dissolved Nickel in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=17549 \mathrm{~km}$

Potassium in Water (Random): Detect $=20589 \mathrm{~km} /$ Nondetect $=740 \mathrm{~km}$

Sodium in Water (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$ Note that scale for Sodium does not show one outlier value of 974.

Selenium in Water

Selenium in Water (Random): Detect $=4234 \mathrm{~km} /$ Nondetect $=17095 \mathrm{~km}$

Dissolved Selenium in Water

Dissolved Selenium in Water (Random): Detect $=2959 \mathrm{~km} /$ Nondetect $=14590 \mathrm{~km}$ Scale for selenium does not show one outlier value of 18.8.

Silver in Water

Random $\quad 21329 \mathrm{~km} \quad$ all values $\leq 25 \mathrm{ug} / \mathrm{L}$
Reference $\quad 30 / 30$ nd median $=25$
Silver in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Dissolved Silver in Water

Random $\quad 17282$ km all values $\leq 1 \mathrm{ug} / \mathrm{L}$
Reference $\quad 28 / 30$ nd median $=1 \mathrm{ug} / \mathrm{L}$
Dissolved Silver in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=17282 \mathrm{~km}$
Zinc in Water

Zinc in Water (Random): Detect $=13111 \mathrm{~km} /$ Nondetect $=8218 \mathrm{~km}$
Scale for Zinc does not show last two outlier values: 106 and 172.

Dissolved Zinc in Water

Dissolved Zinc in Water (Random): Detect $=12701$ km $/$ Nondetect $=4849$ km

ANALYTES IN WATER: BIOCIDES

Alachlor in Water

Random $\quad 20857 \mathrm{~km} \quad$ all values $\leq 0.32 \mathrm{ug} / \mathrm{L}$ Reference $\quad 29 / 30 \mathrm{nd}, \quad$ median $=0.2$
Alachlor in Water (Random): Detect $=267 \mathrm{~km} /$ Nondetect $=20589 \mathrm{~km}$

Atrazine in Water

Atrazine in Water (Random): Detect $=740 \mathrm{~km} /$ Nondetect $=20117 \mathrm{~km}$

Diazinon in Water

Random $\quad 20857$ km all values ≤ 0.4 ug/L
Reference $\quad 20 / 30$ nd median $=0.4$
Diazinon in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Chlordane in Water

Random $\quad 20857 \mathrm{~km} \quad$ all values $\leq 0.2 \mathrm{ug} / \mathrm{L}$

Reference 29/30 nd median=0.2
Chlordane in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Random $\quad 20857$ km all values ≤ 0.056 ug/L
Reference 29/30 nd median=0.05
Chlorpyrifos in Water (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20384 \mathrm{~km}$
Metolachlor in Water

Metolachlor in Water (Random): Detect = 1274 km / Nondetect $=19582$ km

Propachlor in Water

Random $\quad 20857$ km all values ≤ 0.2 ug/L
Reference $\quad 29 / 30$ nd median=0.2
Propachlor in Water (Random): Detect $=0$ km / Nondetect $=20857$ km

Trifluralin in Water

Random $\quad 20857$ km all values ≤ 0.03 ug/L
Reference $\quad 20 / 30$ nd median=0.03
Trifluralin in Water (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Appendix G. Analytes in sediment: physical parameters, general chemistry, metals, and biocides. Reporting considerations are the same as in Appendix F.

ANALYTES IN SEDIMENT:
PHYSICAL PARAMETERS AND GENERAL CHEMISTRY
Percent Solids in Sediment

Percent Solids in Sediment (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Percent Total Organic Carbon in Sediment (Random): Detect $=19787 \mathrm{~km} /$ Nondetect $=1542 \mathrm{~km}$

ANALYTES IN SEDIMENT:

METALS

Arsenic in Sediment

Arsenic in Sediment (Random): Detect $=19110 \mathrm{~km} /$ Nondetect $=2219 \mathrm{~km}$

Barium in Sediment (Random): Detect $=21329 \mathrm{~km} /$ Nondetect $=0 \mathrm{~km}$

Cadmium in Sediment

Cadmium in Sediment (Random): Detect $=19047 \mathrm{~km} /$ Nondetect $=2282 \mathrm{~km}$ Scale for Cadmium does not show outlier values of 3.51, 11.6, and 500.

Chromium in Sediment

Chromium in Sediment (Random): Detect $=19582 \mathrm{~km} /$ Nondetect $=1747 \mathrm{~km}$

Copper in Sediment

Copper in Sediment (Random): Detect $=19582 \mathrm{~km} /$ Nondetect $=1747 \mathrm{~km}$

Lead in Sediment

Lead in Sediment $($ Random $):$ Detect $=20527 \mathrm{~km} /$ Nondetect $=802 \mathrm{~km}$

Mercury in Sediment

Mercury in Sediment (Random): Detect $=10071 \mathrm{~km} /$ Nondetect $=11258 \mathrm{~km}$

Nickel in Sediment

Nickel in Sediment (Random): Detect = $19582 \mathrm{~km} /$ Nondetect $=1747 \mathrm{~km}$

Selenium in Sediment

Selenium in Sediment (Random): Detect $=6863$ km $/$ Nondetect $=14466$ km

Silver in Sediment

Random $\quad 21329 \mathrm{~km} \quad$ all values $\leq 2 \mathrm{mg} / \mathrm{kg}$
Reference $30 / 30$ nd \quad median $=2$
Silver in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Zinc in Sediment

Zinc in Sediment (Random): Detect $=19582 \mathrm{~km} /$ Nondetect $=1747 \mathrm{~km}$ Scale for Zinc does not show one outlier value of 437.

ANALYTES IN SEDIMENT:

BIOCIDES

Aldrin in Sediment

Aldrin in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Alachlor in Sediment (Random): Detect $=0$ km $/$ Nondetect $=21329 \mathrm{~km}$

Aroclor 1016 in Sediment

Arochlor 1016 in Sediment (Random): Detect $=0$ km / Nondetect $=21329 \mathrm{~km}$

Arochlor 1221 in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Aroclor 1232 in Sediment

Arochlor 1232 in Sediment (Random): Detect $=0$ km / Nondetect $=21329$ km

Aroclor 1242 in Sediment

Arochlor 1242 in Sediment $($ Random $):$ Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Aroclor 1248 in Sediment

Arochlor 1248 in Sediment (Random $)$: Detect $=0$ km / Nondetect $=21329 \mathrm{~km}$

Arochlor 1254 in Sediment (Random): Detect $=472$ km $/$ Nondetect $=20857 \mathrm{~km}$

Aroclor 1260 in Sediment

Arochlor 1260 in Sediment (Random): Detect $=0$ km / Nondetect $=21329 \mathrm{~km}$

Atrazine in Sediment $($ Random $):$ Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Alpha-BHC in Sediment

Alpha-BHC in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Beta-BHC in Sediment

Beta-BHC in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Gamma-BHC in Sediment

Gamma-BHC in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Chlordane, technical, in Sediment

Chlordane, technical in Sediment (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$ Scale for Chlordane does not include one outlier of 400.

cis-Chlordane in Sediment

cis-Chlordane in Sediment (Random): Detect = 472 km / Nondetect $=20857$ km
trans-Chlordane in Sediment

trans-Chlordane in Sediment $($ Random $):$ Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Chlorpyrifos in Sediment

Chlorpyrifos in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Diazinon in Sediment

Diazinon in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Dieldrin in Sediment

Dieldrin in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Disulfoton in Sediment

Disulfoton in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Endrin in Sediment

Endrin in Sediment (Random): Detect $=0$ km / Nondetect $=21329 \mathrm{~km}$

p,p'-DDE in Sediment

p,p'-DDE in Sediment (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

p,p'-DDD in Sediment

p,p'-DDD in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$
p,p'-DDT in Sediment

p,p'-DDT in Sediment $($ Random $):$ Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Heptachlor in Sediment

Heptachlor in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Heptachlor Epoxide in Sediment (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Hexachlorobenzene in Sediment

Hexachlorobenzene in Sediment (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Metolachlor in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

cis-Nonachlor in Sediment

cis-Nonachlor in Sediment (Random): Detect = 472 km / Nondetect $=20857$ km
trans-Nonachlor in Sediment

trans-Nonachlor in Sediment $($ Random $):$ Detect $=472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Oxychlordane in Sediment

Oxychlordane in Sediment (Random): Detect = $472 \mathrm{~km} /$ Nondetect $=20857 \mathrm{~km}$

Propachlor in Sediment

Propachlor in Sediment $($ Random $):$ Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Trifluralin in Sediment

Trifluralin in Sediment (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=21329 \mathrm{~km}$

Appendix H. Analytes in fish tissue: metals and biocides. Reporting considerations are the same as in Appendix F.

ANALYTES IN FISH TISSUE:

METALS

Arsenic in Fish Tissue

Random $\quad 10438 \mathrm{~km}$ all values $\leq 0.5 \mathrm{mg} / \mathrm{kg}$ Reference $23 / 23$ nd \quad median $=0.5$
Arsenic in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$
Cadmium in Fish Tissue

Cadmium in Fish Tissue (Random): Detect = $267 \mathrm{~km} /$ Nondetect $=10170 \mathrm{~km}$

Lead in Fish Tissue

Lead in Fish Tissue (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=9965 \mathrm{~km}$

Mercury in Fish Tissue

Mercury in Fish Tissue (Random): Detect $=9493 \mathrm{~km} /$ Nondetect $=945 \mathrm{~km}$

Selenium in Fish Tissue

Selenium in Fish Tissue (Random): Detect $=9965$ km $/$ Nondetect $=472 \mathrm{~km}$

ANALYTES IN FISH TISSUE:

 BIOCIDESAldrin in Fish Tissue

Aldrin in Fish Tissue (Random): Detect $=0$ km / Nondetect $=10438$ km

Aroclor 1016 in Fish Tissue

Aroclor 1016 in Fish Tissue (Random): Detect $=0$ km / Nondetect $=10438$ km

Aroclor 1221 in Fish Tissue

Aroclor 1221 in Fish Tissue (Random): Detect $=0$ km / Nondetect $=10438$ km

Aroclor 1232 in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Aroclor 1242 in Fish Tissue (Random): Detect $=0$ km / Nondetect $=10438$ km

Aroclor 1248 in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Aroclor 1254 in Fish Tissue

Aroclor 1254 in Fish Tissue (Random): Detect $=267 \mathrm{~km} /$ Nondetect $=10170 \mathrm{~km}$

Aroclor 1260 in Fish Tissue (Random): Detect $=0$ km / Nondetect $=10438$ km

Alpha-BHC in Fish Tissue

Alpha-BHC in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Beta-BHC in Fish Tissue

Beta-BHC in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Gamma-BHC in Fish Tissue

Gamma-BHC in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Chlordane, technical, in Fish Tissue

Chlordane, technical, in Fish Tissue (Random): Detect $=1890 \mathrm{~km} /$ Nondetect $=8548 \mathrm{~km}$

cis-Chlordane in Fish Tissue

cis-Chlordane in Fish Tissue (Random): Detect = 945 km / Nondetect $=9493$ km
trans-Chlordane in Fish Tissue

trans-Chlordane in Fish Tissue (Random): Detect $=945 \mathrm{~km} /$ Nondetect $=9493 \mathrm{~km}$

Chlorpyrifos in Fish Tissue

Random $\quad 10437$ km all values $\leq 0.0023 \mathrm{mg} / \mathrm{kg}$ Reference $\quad 23 / 23$ nd median $=0.001 \mathrm{mg} / \mathrm{kg}$ Chlorpyrifos in Fish Tissue: Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

$p, p^{\prime}-$ DDE in Fish Tissue

p,p'-DDE in Fish Tissue: Detect $=2897 \mathrm{~km} /$ Nondetect $=7541 \mathrm{~km}$

p,p'-DDD in Fish Tissue

p,p'-DDD in Fish Tissue: Detect $=472 \mathrm{~km} /$ Nondetect $=9965 \mathrm{~km}$

p,p'-DDT in Fish Tissue

p,p'-DDT in Fish Tissue: Detect $=0$ km $/$ Nondetect $=10438 \mathrm{~km}$

Diazinon in Fish Tissue

Random $\quad 8032 \mathrm{~km}$ all values $\leq 0.4 \mathrm{mg} / \mathrm{kg}$
Reference $8 / 23$ nd \quad median $=0.2$
Diazinon in Fish Tissue: Detect $=0 \mathrm{~km} /$ Nondetect $=8032 \mathrm{~km}$

Disulfoton in Fish Tissue

Disulfoton in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Dieldrin in Fish Tissue

Dieldrin in Fish Tissue (Random): Detect $=1685 \mathrm{~km} /$ Nondetect $=8753 \mathrm{~km}$

Endrin in Fish Tissue

Endrin in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$

Heptachlor in Fish Tissue

Heptachlor in Fish Tissue (Random): Detect = 945 km / Nondetect $=9493$ km

Heptachlor epoxide in Fish Tissue

Heptachlor epoxide in Fish Tissue (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=9965 \mathrm{~km}$

Hexachlorobenzene in Fish Tissue (Random): Detect $=0 \mathrm{~km} /$ Nondetect $=10438 \mathrm{~km}$
cis-Nonachlor in Fish Tissue

cis-Nonachlor in Fish Tissue (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=9965 \mathrm{~km}$
trans-Nonachlor in Fish Tissue

trans-Nonachlor in Fish Tissue (Random): Detect = $1212 \mathrm{~km} /$ Nondetect $=9225 \mathrm{~km}$

Oxychlordane in Fish Tissue

Oxychlordane in Fish Tissue (Random): Detect $=472 \mathrm{~km} /$ Nondetect $=9965 \mathrm{~km}$

Appendix I. Water, sediment, and tissue chemistry compared to criteria, benchmarks, and guidelines. Note that estimates are derived only from the "random" population of sites.

Water chemistry. Criteria are from the Kansas Aquatic Life Use Criteria (KDHE Bureau of Water 2004) and values are expressed as the estimated number of wadeable stream km in Kansas (out of 21,239 total), plus or minus 95% confidence intervals, that would meet or fail to meet the ALU criteria. A single asterisk (*) indictes analytes for which the criterion was calculated on a site-specific basis because of its dependence on hardness (metals) or pH and temperature (ammonia). Nondetect values represent only those sites for which the nondetect reporting limit was above the ALU criterion; when the reporting limit was below the ALU criterion, it was considered to have met the criterion. Criteria for dissolved oxygen, pH , and temperature are the same for expected, special, and restricted categories. "N/A" sites are those for which data were not available and/or criteria were not calculable.

ANALYTE	ALU CRITERION	CATEGORY			
		PASS	FAIL	NONDETECT	N/A
temperature	(all)	20322 ± 1467			1480 ± 1467
dissolved oxy	(all)	14814 ± 2701	5980 ± 2578		1007 ± 1172
pH	(all)	20527 ± 1277	267 ± 527		1007 ± 1172
silver	acute*	8343 ± 2846		12986 ± 2846	
chromium	chronic	21329 ± 0			
copper	acute*	21329 ± 0			
copper	chronic*	21329 ± 0			
nickel	acute*	21329 ± 0			
nickel	chronic*	21329 ± 0			
zinc	acute*	21329 ± 0			
zinc	chronic*	21329 ± 0			
arsenic	acute	21329 ± 0			
arsenic	chronic	21329 ± 0			
cadmium	acute*	21329 ± 0			
cadmium	chronic*				
lead	acute*	21329 ± 0			
lead	chronic*	17549 ± 2362	3780 ± 2362		
selenium	acute	21329 ± 0			
selenium	chronic	19849 ± 1466	1480 ± 1466		472 ± 923
mercury	acute	21329 ± 0			
mercury	chronic	21062 ± 527	267 ± 527		
alachlor	acute	20857 ± 923			
alachlor	chronic	20857 ± 923			
propachlor	chronic	20857 ± 923			
atrazine	acute	20857 ± 923			
atrazine	chronic	20117 ± 1380	740 ± 1055		
chlorpyrifos	acute	20857 ± 923			
chlorpyrifos	chronic	11339 ± 2881			
diazinon	chronic	21062 ± 527			
chloride	acute				

ANALYTE	ALU CRITERION	CATEGORY			
ammonia	acute, no salmonids*	20794 ± 743			535 ± 743
ammonia	chronic, early life pres.*				21329 ± 0
ammonia	chronic, no early life*	19725 ± 1272	535 ± 743	535 ± 743	535 ± 743
chlordane, technical	acute	20857 ± 923			472 ± 923
chlordane, technical	chronic			20857 ± 923	472 ± 923

Sediment Benchmarks. Guidelines are derived from the document, "Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines" (Ingersoll, MacDonald et al. 2000). All values are expressed in estimated number of Kansas wadeable stream km (out of 26,445) plus or minus 95% CI. Other reporting considerations are as for water chemistry.

ANALYTE	CATEGORY			
	PASS	FAIL	NDT	NA
Arsenic	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Cadmium	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Chlordane	16070 ± 3210	472 ± 923	4787 ± 2596	5116 ± 2589
Chromium	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Copper	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Dieldrin	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Endrin	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Heptachlor	21062 ± 2621	0 ± 0	267 ± 527	5116 ± 2589
Epoxide	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Lead	18905 ± 2960	0 ± 0	2424 ± 1911	5116 ± 2589
Lindane (gamma	0 ± 0	5116 ± 2589		
BHC)	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Mercury	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
Nickel	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
SumDDD	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
SumDDE	21329 ± 2589	0 ± 0	0 ± 0	5116 ± 2589
SumDDT	21329 ± 2589	0 ± 0	0 ± 0	
Zinc				0

Fish Tissue Guidelines. Whole-fish guidelines are not available for human consumption. Therefore, whole fish tissue chemistry here is compared to filet tissue screening values for designation of "green areas" for human consumption; estimates should be interpreted with caution. $\mathrm{REC}=$ recreational fishing; $\mathrm{SUB}=$ subsistence fishing. All values are expressed in estimated number of stream km (out of 26445) plus or minus 95% confidence interval. Other reporting considerations are as for water chemistry.

ANALYTE - guideline	PASS	FAIL	Nondetect	Unknown	NA
AroclorSum - REC	10170 ± 3191	267 ± 527		1609 ± 3199	
AroclorSum - SUB		267 ± 527		10170 ± 3191	16008 ± 3199
Arsenic - REC			10438 ± 3199	16008 ± 3199	
Arsenic - SUB			10438 ± 3199		16008 ± 3199
Cadmium - REC	10438 ± 3199			16008 ± 3199	

ANALYTE - guideline	PASS	FAIL	Nondetect	Unknown	NA
Cadmium - SUB	10438 ± 3199				16008 ± 3199
ChlordaneSum - REC	9493 ± 3136	945 ± 1292			16008 ± 3199
ChlordaneSum - SUB		1890 ± 1789		8548 ± 3050	16008 ± 3199
Chlorpyrifos - REC	10438 ± 3199				16008 ± 3199
Chlorpyrifos - SUB	10438 ± 3199				16008 ± 3199
DDTsum - REC				10438 ± 3199	16008 ± 3199
DDTsum - SUB		945 ± 1292		9493 ± 3136	16008 ± 3199
Dieldrin - REC		1685 ± 1641	8753 ± 3083		16008 ± 3199
Dieldrin - SUB		1685 ± 1641	8753 ± 3083		16008 ± 3199
Disulfoton - REC	10170 ± 3191		267 ± 527		16008 ± 3199
Disulfoton - SUB	8032 ± 3116		2406 ± 1549		16008 ± 3199
Endrin - REC	10438 ± 3199				16008 ± 3199
Endrin - SUB	10438 ± 3199				16008 ± 3199
HeptachlorEpoxide REC	2139 ± 1464	472 ± 923	7826 ± 3082		16008 ± 3199
HeptachlorEpoxide SUB		472 ± 923	9965 ± 3170		16008 ± 3199
Hexachlorobenzene REC	10438 ± 3199				16008 ± 3199
Hexachlorobenzene SUB	2406 ± 1549		8032 ± 3116		16008 ± 3199
Lindane - REC	10438 ± 3199				16008 ± 3199
Lindane - SUB	8753 ± 3083		1685 ± 1641		16008 ± 3199
Mercury - REC	10438 ± 3199				16008 ± 3199
Mercury - SUB	5918 ± 2682	4519 ± 2564			16008 ± 3199
Selenium - REC	10438 ± 3199				16008 ± 3199
Selenium - SUB	9493 ± 3136	945 ± 1292			16008 ± 3199

Appendix J. Physical habitat characteristics of reference sites. This table shows summary statistics for the 30 reference sites.

code	analyte	n-all	min-all	p25-all	p50-all	p75-all	max-all	mean-all	stdev-all
xbka	Bank Angle--mean (degrees)	30	14.55	27.27	37.27	49.77	101.59	40.98	18.02
xun	Undercut Distance--Mean (m)	30	0.00	0.00	0.02	0.06	0.18	0.04	0.05
XBKF	Bankfull Width--Mean (m)	30	3.78	8.59	16.56	21.01	54.85	17.67	11.45
XBKF	Bankfull Height-Mean (m)	30	0.31	0.56	0.67	0.88	1.14	0.71	0.23
XINC	Channel Incision Ht.-Mean (m)	30	0.67	2.15	3.00	3.85	6.05	3.02	1.27
xpcm	Rip Can \& MidLayer Present (Frac. reach)	30	0.00	0.55	0.80	1.00	1.00	0.72	0.31
xpcmg	Riparian 3-Layers Present (Fract. reach)	30	0.00	0.55	0.80	1.00	1.00	0.72	0.31
xcl	Riparian Canopy > 0.3m DBH (Cover)	30	0.00	0.02	0.04	0.17	0.37	0.09	0.10
xgb	Rip Ground Layer Barren (Cover)	30	0.00	0.23	0.30	0.37	0.56	0.29	0.13
XC	Riparian Veg Canopy Cover	30	0.00	0.06	0.12	0.34	0.76	0.22	0.22
XG	Riparian Veg Ground Layer Cover	30	0.05	0.25	0.35	0.42	0.85	0.36	0.17
XCMW	Rip Veg Canopy+Mid Layer Woody Cover	30	0.01	0.15	0.29	0.59	1.19	0.39	0.33
XCMGW	Rip Veg Canopy+Mid+Ground Woody Cover	30	0.02	0.20	0.36	0.66	1.50	0.48	0.39
pcan	Riparian Canopy Coniferous (Fract reach)	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
xcdenbk	Mean Bank Canopy Density (\%)	30	0.88	53.48	80.61	89.84	98.93	69.47	26.47
xcdenmid	Mean Mid-channel Canopy Density (\%)	30	0.44	18.85	50.53	61.23	90.11	42.55	26.73
XEMBED	Mean Embeddedness--Channel+Margin (\%)	30	31.00	46.82	66.14	81.27	100.00	65.45	22.16
xfc	Fish Cvr-Filamentous Algae (Areal Prop)	30	0.00	0.00	0.02	0.07	0.40	0.07	0.11
xfc	Fish Cvr-Aq. Macrophytes (Areal Prop)	30	0.00	0.00	0.00	0.09	0.67	0.07	0.15
xfc	Fish Cvr-Large Woody Debris (Areal Prop)	30	0.00	0.00	0.01	0.04	0.15	0.03	0.04
xfc	Fish Cvr-Brush\&Small Debris (Areal Prop)	30	0.00	0.01	0.03	0.05	0.11	0.04	0.03
xfc	Fish Cvr-Overhang Veg (Areal Prop)	30	0.00	0.02	0.05	0.11	0.52	0.09	0.12
xfc	Fish Cvr-Undercut Banks (Areal Prop)	30	0.00	0.00	0.01	0.04	0.49	0.04	0.09
xfc	Fish Cvr-Boulders (Areal Prop)	30	0.00	0.00	0.01	0.06	0.38	0.07	0.11
xfc	Fish Cvr-Artif. Structs. (Areal Prop)	30	0.00	0.00	0.00	0.00	0.03	0.00	0.01
xfc	Fish Cvr-All Types (Sum Areal Prop)	30	0.04	0.12	0.23	0.33	1.11	0.27	0.21
xfc	Fish Cvr-Natural Types (Sum Areal Prop)	30	0.04	0.12	0.23	0.33	1.11	0.26	0.21
xfc	Fish Cvr-LWD,RCK,UCBorHUM(Sum Area Prop)	30	0.00	0.05	0.10	0.19	0.49	0.14	0.13
w1	Rip Dist--Sum All Types (ProxWt Pres)	30	0.06	0.52	1.22	1.63	2.42	1.17	0.61
w1	Rip Dist--Sum NonAg Types (ProxWt Pres)	30	0.00	0.07	0.27	0.77	1.76	0.45	0.48

code	analyte	n-all	min-all	p25-all	p50-all	p75-all	max-all	mean-all	stdev-all
w1	Rip Dist--Sum Agric Types (ProxWt Pres)	30	0.00	0.09	0.63	1.50	1.58	0.72	0.62
w1h	Rip Dist--Wall/Bank Revet. (ProxWt Pres)	30	0.00	0.00	0.00	0.00	0.48	0.03	0.11
w1h	Rip Dist--Pipes infl/effl (ProxWt Pres)	30	0.00	0.00	0.00	0.00	0.08	0.00	0.01
Isub	Substrate-Mean Log10(Diam Class mm)	30	-2.11	0.00	0.87	1.41	2.18	0.62	1.09
Ltest	Log10[Erod. Substr Dia.(mm)]-Fast est	30	-0.03	0.52	0.71	1.00	1.52	0.74	0.36
LRBS	Log10[Relative Bed Stability] - Fast est	30	-2.68	-0.29	0.03	0.42	1.63	-0.13	0.97
Idmb	Log10[Erod. Substr Dia.(mm)]-Est. 2	30	0.25	0.87	1.06	1.31	1.83	1.06	0.40
Irbs	Log10[Rel. Bed Stability] - Est. 2	30	-3.09	-0.84	-0.28	0.07	1.63	-0.45	1.00
reachlen	Length of sample reach (m)	30	150.00	176.00	284.50	300.00	1970.00	302.83	320.59
xslope	Channel Slope -- reach mean (\%)	30	0.05	0.11	0.18	0.29	0.81	0.25	0.20
rpgt75	Resid Pools $>75 \mathrm{~cm}$ deep (number/reach)	30	0.00	0.00	1.00	2.00	4.00	0.97	1.10
rpgt100	Resid Pools $>100 \mathrm{~cm}$ deep (number/reach)	30	0.00	0.00	0.00	1.00	3.00	0.57	0.86
rpmxdep	Maximum residual depth in reach (cm)	30	14.70	56.77	91.83	119.23	221.76	87.58	43.06
rpxarea	Mean vert. profile area of RPs (m2/pool)	30	0.54	2.69	7.46	16.52	138.76	15.04	25.75
rp100	Mean Residual Depth (cm or m2/100m)	30	3.11	13.99	20.98	35.11	62.01	25.49	15.41
Isubd	Substrate-StDev LOG10(Diam Class mm)	30	0.00	0.78	1.35	1.67	2.39	1.25	0.66
PCT	Substrate Fines -- Silt/Clay/Muck (\%)	30	0.00	3.64	12.73	16.36	100.00	17.90	22.56
PCT	Substrate Sand -- .06-2 mm (\%)	30	0.00	0.00	5.45	30.91	100.00	20.06	30.50
PCT	Substrate Hardpan -- (\%)	30	0.00	0.00	0.00	0.00	10.00	0.70	2.29
pct	Substrate Concrete (\%)	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PCT	Substrate Sand \& Fines -- <2 mm (\%)	30	0.00	16.36	26.36	50.91	100.00	37.96	32.72
PCT	Substrate <= Fine Gravel (<=16 mm) (\%)	30	16.36	30.91	43.64	78.18	100.00	53.31	28.31
PCT	Substrate >= Coarse Gravel (>16 mm) (\%)	30	0.00	10.91	55.45	69.09	83.64	43.97	29.90
PCT	Substrate Bedrock (\%)	30	0.00	0.00	2.16	9.09	50.91	7.05	11.40
PCT	Substrate Wood or Detritus -- (\%)	30	0.00	0.00	0.00	3.64	21.82	1.94	4.30
v1w	LWD Vol in Bkf chnl (m3/m2-all sizes)	30	0.00	0.00	0.00	0.00	0.03	0.00	0.00
v4w	LWD Vol in Bkf chnl (m3/m2-L, X)	30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
v1tm100	LWD Vol in/abv Bf chan(\#/100m-all sizes)	30	0.00	0.74	3.67	7.01	15.01	4.46	4.34
v4tm100	LWD Vol in/abv Bf chan (\#/100m-L, X)	30	0.00	0.00	0.00	2.33	9.42	1.34	2.16
sinu	Channel Sinuosity (m/m)	30	1.01	1.05	1.11	1.29	2.49	1.23	0.30
xdepth	Thalweg Mean Depth (cm)	30	20.62	25.80	40.42	68.69	100.46	47.13	22.43
sddepth	Std Dev of Thalweg Depth (cm)	30	4.22	16.01	21.78	33.64	57.24	24.71	12.74

| code | analyte | n-all | min-all | p25-all | p50-all | p75-all | max-all | mean-all | stdev-all |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| xwidth | Wetted Width -- Mean (m) | 30 | 2.44 | 4.57 | 8.08 | 13.80 | 33.38 | 10.38 | 7.65 |
| xwxd | Mean Width*Depth Product (m2) | 30 | 0.64 | 1.76 | 3.16 | 10.59 | 27.72 | 6.31 | 6.38 |
| xwd | Mean Width/Depth Ratio (m/m) | 30 | 10.06 | 17.68 | 24.84 | 39.24 | 71.28 | 28.62 | 15.96 |
| sdwxd | Std Dev of Width*Depth Product (m2) | 30 | 0.43 | 1.31 | 2.83 | 5.40 | 10.34 | 3.61 | 2.84 |
| pct | Falls (\% of reach) | 30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| pct | Fast Wtr Hab (\% riffle \& faster) | 30 | 0.00 | 2.00 | 11.00 | 18.00 | 30.00 | 10.87 | 9.12 |
| pct | Slow Wtr Hab (\% Glide \& Pool) | 30 | 62.67 | 79.00 | 87.00 | 95.00 | 100.00 | 87.02 | 10.42 |
| pct | Pools -- All Types (\% of reach) | 30 | 0.00 | 0.00 | 19.17 | 42.00 | 68.00 | 24.43 | 22.56 |
| pct | Dry Channel or Subsurf Flow (\%) | 30 | 0.00 | 0.00 | 0.00 | 0.00 | 37.33 | 2.11 | 7.13 |
| pct | Side channel presence (\% of reach) | 30 | 0.00 | 0.00 | 1.00 | 8.00 | 52.00 | 5.82 | 10.69 |

Appendix K. Physical habitat characteristics.

PHYSICAL HABITAT:
CHANNEL AND REACH MORPHOLOGY

Mean Bankfull Width

Mean Bankfull Height

Mean Channel Incision Height

Mean Bank Angle

Channel Slope -- reach mean (\%)

Channel Sinuosity (m / m)

Mean Undercut Distance

Maximum residual depth in reach (cm)

Mean Residual Depth (cm or m2/100m)

Thalweg Mean Depth (cm)

Std Dev of Thalweg Depth (cm)

Mean Width*Depth Product (m2)

Std Dev of Width*Depth Product (m2)

Mean Width/Depth Ratio (m / m)

Residual pools >75 cm deep (number/reach)
Random Reference

21801 km $30 / 30$ meas
75% of $\mathbf{k m}=0$; all values ≤ 4 median = 1

	Residual pools $>100 \mathrm{~cm}$ deep (number/reach)	
Random	21801 km	89% of $\mathrm{km}=0$; all values ≤ 4 Reference
$30 / 30 \mathrm{meas}$	median $=0$	

Mean vert. profile area of RPs (m2/pool)

Slow Wtr Hab (\% Glide \& Pool)

Pools -- All Types (\% of reach)

'Dry Channel or Subsurf Flow (\%)

Falls (\% of reach)

Random
Reference

21801 km
30/30 meas
all values 0\% median = 0\%

Side channel presence (\% of reach)

Mean Embeddedness, Channel + Margin

Mean Substrate Diameter

Standard Deviation of Substrate Diameter

Erodible Substrate Diameter - Fast est.

Relative Bed Stability - Fast est.

Erodible Substrate Diameter - Est. 2

Relative Bed Stability - Est 2

Substrate Fines -- Silt/Clay/Muck (\%)

Substrate Sand -- .06-2 mm (\%)

Substrate Hardpan

Random
Reference

21801 km
30/30 meas

98\% of values $<4 \%$; all values $\leq 10 \%$
median = 0\%

Substrate Concrete

Random	21801 km	all values 0\%
Reference	$30 / 30$ meas	median $=0 \%$

Substrate Sand \& Fines -- <2 mm (\%)

Substrate <= Fine Gravel (<=16 mm) (\%)

Substrate >= Coarse Gravel (>16 mm) (\%)

Substrate Bedrock

Random	21801 km	86% of values $0 \% ;$ all values $\leq 10 \%$ Reference $30 / 30$ meas

Substrate Wood or Detritus -- (\%)

Reference site median value (based on $30 / 30$ sites) $=0 \%$.

PHYSICAL HABITAT:
RIPARIAN COVER, RIPARIAN DISTURBANCE, FISH COVER, and LARGE WOODY DEBRIS

Mean Bank Canopy Density

Mean Mid-channel Canopy Density

Riparian Ground Layer Barren

Riparian Vegetation Ground Layer Cover

Rip Can \& MidLayer Present (Frac. reach)

Riparian Vegetation Canopy Cover

Outlier values of $0.53-0.76$ (representing less than $\mathbf{3 \%}$ of $\mathbf{k m}$) not shown.

Riparian Vegetation Canopy + Midlayer + Groundlayer Woody Cover

Riparian Vegetation Canopy + Midlayer Woody Cover

Riparian Canopy $\mathbf{>} \mathbf{0 . 3 m}$ DBH

Riparian Vegetation Coniferous Cover
Random $\quad 21801 \mathrm{~km} \quad$ all values $\leq 0.9 \%$
Reference $\quad 30 / 30$ meas \quad median $=0 \%$

Riparian Disturbance - Sum All Types

Riparian Disturbance - Sum Non-Agricultural Types

Outlier values of 0.44-0.75 (representing less than 5% of km) not shown. Note scale. Reference site median value (based on $30 / 30$ sites) $=0 \%$.

Riparian Disturbance - Pipes

Fish Cover - All Types

Fish cover, all types (sum areal proportions)

Outlier values of 0.94-1.1 (representing less than $\mathbf{2 \%}$ of $\mathbf{k m}$) not shown.

Fish Cover - Natural Types

Fish cover, natural types (sum areal proportions)

Reference site median value (based on $30 / 30$ sites) $=0 \%$.
Fish Cover - Artificial Structures

Reference site median value (based on $30 / 30$ sites) $=\mathbf{0 \%}$.

Fish Cover - LWD, RCK, UCB or HUM

Fish Cover - Filamentous Algae

Outlier values of $0.18-0.57$ (representing less than 3% of $k m$) not shown. Note scale.

Fish Cover - Aquatic Macrophytes

Outlier values of 0.63-0.66 (representing less than 3% of km) not shown. Reference site median value (based on $30 / 30$ sites) $=0 \%$.

Fish Cover - Large Woody Debris

Fish Cover - Brush \& Small Debris

Fish Cover - Overhanging Vegetation

Outlier values of $0.51-0.88$ (representing less than $\mathbf{6 \%}$ of km) not shown.

Fish Cover - Undercut Banks

Note scale.
Fish Cover - Boulders

Outlier values of $0.14-0.47$ (representing less than 4% of $\mathbf{k m}$) not shown. Note scale.

LWD Vol in Bkf chnl (m3/m2-all sizes)

Outlier values of 0.08 and 0.14 (representing less than $\mathbf{3 \%}$ of $\mathbf{k m}$) not shown. Reference site median value (based on $30 / 30$ sites) $=0$.

LWD Vol in Bkf chnl (m3/m2-L,X)

Reference site median value (based on $\mathbf{3 0 / 3 0}$ sites) $=\mathbf{0 \%}$.

Outlier values of 60.0-87.4 (representing less than $\mathbf{2 \%}$ of $\mathbf{k m}$) not shown.
LWD Vol in/abv Bf chan (\#/100m-L,X)

Reference site median value (based on $30 / 30$ sites) $=0 \%$.

Appendix L. Fish species collected from 30 reference sites and 55 random sites.

 (Note that data from sites KES022 and KES037 are not included.). Some species are named as Endangered (ENDANG), Threatened (THREAT), or Species in need of conservation (SINC), based on state listings (Kansas Department of Wildlife and Parks 2005; Kansas Department of Wildlife and Parks 2005). Several species are marked as INTRO (not originally native in Kansas), based on distribution information from Cross and Collins (1995), NatureServe, and other sources.| SCIENTIFIC NAME (common name) | STATUS | REFERENCERANDOM | | |
| :--- | :--- | :--- | :--- | :--- |
| Ambloplites rupestris (rock bass) | INTRO | 1 | 1 | |
| Ameiurus melas (black bullhead) | | 11 | 20 | 31 |
| Ameiurus natalis (yellow bullhead) | | 15 | 14 | 29 |
| Aplodinotus grunniens (freshwater drum) | | 3 | 5 | 8 |
| Campostoma anomalum (central stoneroller) | | 27 | 36 | 63 |
| Carassius auratus (goldfish) | | 1 | | 1 |
| Carpiodes carpio (river carpsucker) | | 7 | 9 | 16 |
| Carpiodes cyprinus (quillback) | | 1 | 3 | 4 |
| Catostomus commersoni (white sucker) | | 7 | 10 | 17 |
| Cottus carolinae (banded sculpin) | SINC | 1 | | 1 |
| Cyprinella camura (bluntface shiner) | | 5 | | 5 |
| Cyprinella lutrensis (red shiner) | | 27 | 40 | 67 |
| Cyprinella spiloptera (spotfin shiner) | SINC | 1 | | 1 |
| Cyprinus carpio (common carp) | INTRO | 15 | 17 | 32 |
| Dorosoma cepedianum (gizzard shad) | | 7 | 11 | 18 |
| Erimystax x-punctatus (gravel chub) | SINC | 1 | | 1 |
| Etheostoma blennioides (greenside darter) | SINC | 2 | | 2 |
| Etheostoma cragini (Arkansas darter) | THREAT | 2 | 2 | 4 |
| Etheostoma flabellare (fantail darter) | | 2 | | 2 |
| Etheostoma nigrum (Johnny darter) | | | 3 | 3 |
| Etheostoma spectabile (orangethroat darter) | | 23 | 24 | 47 |
| Etheostoma stigmaeum (speckled darter) | SINC | 1 | | 1 |
| Etheostoma whipplei (redfin darter) | | 1 | 1 | 2 |
| Etheostoma zonale (banded darter) | SINC | 1 | | 1 |
| Fundulus notatus (blackstripe topminnow) | | 6 | 5 | 11 |
| Fundulus zebrinus (plains killifish) | | 6 | 10 | 16 |
| Gambusia affinis (western mosquitofish) | | 6 | 20 | 26 |
| Ictalurus punctatus (channel catfish) | | 17 | 16 | 33 |
| Ictiobus bubalus (smallmouth buffalo) | | 7 | 4 | 11 |
| Ictiobus cyprinellus (bigmouth buffalo) | | 1 | 2 | 3 |
| Labidesthes sicculus (brook silverside) | | 7 | 3 | 10 |
| Lepisosteus osseus (longnose gar) | | 4 | 4 | 8 |
| Lepisosteus platostomus (shortnose gar) | | 2 | | 2 |
| Lepomis cyanellus (green sunfish) | | 28 | 42 | 70 |
| Lepomis cyanellus X macrochirus (bluegill X | | 4 | 1 | 5 |
| green sunfish) | | 1 | 17 | 1 |
| Lepomis gulosus (warmouth) | 17 | 34 | | |
| Lepomis humilis (orangespotted sunfish) | | 23 | 21 | 44 |
| Lepomis macrochirus (bluegill) | | | | |
| | | | 17 | |

SCIENTIFIC NAME (common name)	STATUS	REF	RAN	Grand Total
Lepomis megalotis (longear sunfish)		19	12	31
Luxilus cardinalis (cardinal shiner)		2		2
Luxilus cornutus (common shiner)		4	4	8
Lythrurus umbratilis (redfin shiner)		10	9	19
Macrhybopsis storeriana (silver chub)	ENDANG		1	1
Micropterus punctulatus (spotted bass)		6	1	7
Micropterus salmoides (largemouth bass)		21	29	50
Minytrema melanops (spotted sucker)	SINC	1	1	2
Morone americana (white perch)	INTRO		2	2
Morone chrysops (white bass)		3	3	6
Moxostoma erythrurum (golden redhorse)	SINC	7	3	10
Moxostoma macrolepidotum (shorthead redhorse)		9	1	10
Nocomis asper (redspot chub)	THREAT	1		
Nocomis biguttatus (hornyhead chub)	THREAT	1		1
Notemigonus crysoleucas (golden shiner)		5	8	13
Notropis atherinoides (emerald shiner)		2	4	6
Notropis boops (bigeye shiner)		2		2
Notropis rubellus (rosyface shiner)		4		4
Notropis stramineus (sand shiner)		19	26	45
Notropis topeka (Topeka shiner)	THREAT	1	1	2
Notropis volucellus (mimic shiner)		3	1	4
Noturus exilis (slender madtom)		9	4	13
Noturus flavus (stonecat)		6	5	11
Noturus nocturnus (freckled madtom)		2		2
Percina caprodes (logperch)		11	4	15
Percina copelandi ()		1		1
Percina copelandi (channel darter)		1		1
Percina phoxocephala (slenderhead darter)		7	4	11
Phenacobius mirabilis (suckermouth minnow)		16	22	38
Phoxinus erythrogaster (southern redbelly dace)		2	1	3
Pimephales notatus (bluntnose minnow)		17	15	32
Pimephales promelas (fathead minnow)		11	34	45
Pimephales tenellus (slim minnow)		1	1	2
Pimephales vigilax (bullhead minnow)		3	8	11
Polyodon spathula (paddlefish)			1	1
Pomoxis annularis (white crappie)		6	9	15
Pomoxis nigromaculatus (black crappie)		1	1	2
Pylodictis olivaris (flathead catfish)		11	9	20
Semotilus atromaculatus (creek chub)		14	26	40
Semotilus atromaculatus (fathead minnow)		1		1
Grand Total		531	590	1121

Appendix M. Fish community characteristics of reference sites. This table shows summary statistics for the reference sites.

code	analyte	n	min	p25	p50	p75	max	mean	stdev
natsp	Native Species Richness Score (0-10)	30	0	5.93	7.37	8.52	10.00	7.13	2.24
natfam	Native Family Richness Score (0-10)	30	0	5.95	7.49	8.96	10.00	7.41	2.13
nindiv	No. Indiv. Score (0-10)	30	0	2.99	5.36	7.86	10.00	5.72	2.88
sensit	Sensit. Spp. Rich. Score (0-10)	30	0	0.00	4.19	7.49	10.00	4.00	3.93
tolrnt	\% Tolerants Score (0-10)	30	0	1.36	4.41	8.60	10.00	4.90	3.59
smbenth	Ntv Sm. Benth. Spp. Rich. Score (0-10)	30	0	4.07	6.59	8.32	10.00	6.19	2.80
benthic	Native Benth. Spp. Rich. Score (0-10)	30	0	3.16	5.02	7.35	10.00	5.24	2.59
wcolumn	Ntv Wtr. Col. Spp. Rich. Score (0-10)	30	0	4.76	6.28	7.84	10.00	6.30	2.41
wcolspcl	Ntv Wtr. Col. Spec. Spp. Score (0-10)	30	0	1.33	4.04	7.05	10.00	4.39	3.39
sunfish	Ntv Centrarchid Spp. Rich. Score (0-10)	30	0	3.31	4.84	7.13	10.00	5.02	2.24
minnow	Ntv Cyprinid Spp. Rich. Score (0-10)	30	0	4.55	5.56	8.18	10.00	5.99	2.53
longlive	Ntv. Long-lived Spp. Rich. Score (0-10)	30	0	5.29	6.61	8.66	10.00	6.71	2.36
alien	\% Non-natives Score (0-10)	30	0	9.15	9.59	9.90	10.00	8.95	2.19
troph	No. Trophic Strat. Score (0-10)	30	0	6.73	8.88	10.00	10.00	8.36	2.17
carn	\% Carnivores Score (0-10)	30	0	0.96	3.26	6.07	10.00	4.14	3.56
insinv	\% Insectivores+Invertivores Score (0-10)	30	0	5.78	8.11	10.00	10.00	7.30	3.25
insect	\% Insectivores Score (0-10)	30	0	3.60	5.66	10.00	10.00	6.16	3.58
herbiv	\% Herbivores+Micro. Omniv. Score (0-10)	30	0	10.00	10.00	10.00	10.00	8.80	2.72
omni	\% Macrophagic Omnivores Score (0-10)	30	0	8.85	10.00	10.00	10.00	8.57	2.90
omnihb	\% Omniv. + Herbiv. Score (0-10)	30	0	5.15	9.22	10.00	10.00	7.57	3.13
repro	No. Reprod. Strat. Score (0-10)	30	0	8.00	8.00	8.57	10.00	7.68	2.05
tolrepr	\% Tolerant Spawners Score (0-10)	30	0	3.96	6.41	8.82	10.00	6.25	3.13
gravel	\% Cln. Subs. Spawners Score (0-10)	30	0	3.96	6.40	8.82	10.00	6.25	3.13
ibi1	IBI Score (0-100)--MAHA metrics+longlive	30	0	63.99	68.38	73.29	84.99	65.75	15.44
ibi4	IBI based on S:N and resp. (10 metrics)	30	0	58.70	63.99	69.57	85.43	61.78	16.16
ibi5	IBI Score (13 metrics)	30	0	59.31	65.54	71.34	83.20	62.79	15.36
ibi6	IBI score (12 metrics)	30	0	60.68	66.16	70.01	81.80	62.82	15.52
ibi7	IBI score (11 metrics)	30	0	59.16	65.02	70.12	83.62	61.89	15.93
ibi8	IBI score (8 metrics)	30	0	54.19	64.78	71.35	88.06	60.61	17.55

Appendix N. Fish community metrics and indices of biotic integrity.

IBI Score 8-metric

Metric	$12-\mathrm{m}$ IBI	$11-\mathrm{m}$ IBI	$8-\mathrm{m}$ IBI
1. Native Species Richness	X	X	X
2. Native Family Richness	X	X	X
3. Number of Individuals Collected	X	X	-
4. Sensitive Species Richness	X	X	X
5. Proportion of Tolerant Individuals	X	X	X
6. Number of Native Benthic Species	X	X	X
7. Number of Native Water Column Species	X	X	-
8. Number of Long-lived species	X	X	X
9. Proportion of Individuals of Introduced Species	X	X	X
10. Proportion of Individuals as Carnivores	X	X	X
11. Proportion of Individuals as Insectivores and Invertivores	X	-	-
12. Proportion of Individuals as Omnivores and Herbivores	X	X	-

Metrics included in the 8-metric IBI:

Native Species Richness Score

Native Family Richness Score

Sensitive Species Richness Score

Tolerants Score

S

Native Benthic Species Richness Score

Native Longlived Species Richness Score

Percent Nonnatives Score

Percent Carnivores Score

Metrics calculated but not included in the IBI:

Number of Individuals Score

Native Small Benthic Species Richness Score

Native Centrarchid Species Richness Score

Native Cyprinid Species Richness Score

Number of Trophic Strata Score

Percent Insectivores Score

Percent Insectivores - Invertivores Score

Percent Herbivores - Micro - Omnivores Score

Percent Macrophagic Omnivores Score

Percent Omnivores - Herbivores Score

No Repro Strata Score

Percent Tolerant Spawners Score

Percent Clean Substrate Spawners Score

Appendix O. Measures examined for correlations. Type of variable: $\mathrm{F}=$ fish, $\mathrm{P}=$ physical habitat, $\mathrm{W}=$ water chemistry.

Type	Abbr.	Label
F	numspec	Total number of species in sample
F	numnatsp	Number of native species in sample
F	numfamly	Total number of families in sample
F	numnatfm	Number of native families in sample
F	nssen	No. of sensitive spp. in sample
F	psen	Prop. of sensitive indiv. in sample
F	nsnsen	No. of native sensitive spp. in sample
F	pnsen	Prop. of ntv sensitive indiv. in sample
F	nstole	No. of tolerant spp. in sample
F	ptole	Prop. of tolerant indiv. in sample
F	nsntole	No. of native toleerant spp. in sample
F	pntole	Prop. of ntv tolerant indiv. in sample
F	nslunk	No. of long-lived spp. in sample
F	plunk	Prop. long-lived indiv. in sample
F	nsnlunk	No. native long-lived spp. in sample
F	pnlunk	Prop. native long-lived indiv. in sample
F	nsintro	No. non-native spp. in sample
F	numintro	No. non-native indiv. in sample
F	pintro	Prop. non-native indiv. in total sample
F	pnativ	Prop. native indiv. in total sample
F	ntroph	No. Trophic Strategies (all spp.)
F	nntroph	No. Trophic Strategies (ntv spp.)
F	epcarn	Exp. Prop. Carnivores
F	epinsiv	Exp. Prop. Ins-inv.
F	epmac	Exp. Prop. mac. omni.
F	ephbmic	Exp. Prop. Herb.+ mic. omni.
F	affin	Trophic Model Affinity (all spp.)

Type	Abbr.	Label
F	natsp	Native Species Richness Score (0-10)
F	natfam	Native Family Richness Score (0-10)
F	nindiv	No. Indiv. Score (0-10)
F	sensit	Sensit. Spp. Rich. Score (0-10)
F	tolrnt	\% Tolerants Score (0-10)
F	smbenth	Ntv Sm. Benth. Spp. Rich. Score (0-10)
F	benthic	Native Benth. Spp. Rich. Score (0-10)
F	wcolumn	Ntv Wtr. Col. Spp. Rich. Score (0-10)
F	wcolspcl	Ntv Wtr. Col. Spec. Spp. Score (0-10)
F	sunfish	Ntv Centrarchid Spp. Rich. Score (0-10)
F	minnow	Ntv Cyprinid Spp. Rich. Score (0-10)
F	longlive	Ntv. Long-lived Spp. Rich. Score (0-10)
F	alien	\% Non-natives Score (0-10)
F	troph	No. Trophic Strat. Score (0-10)
F	carn	\% Carnivores Score (0-10)
F	insinv	\% Insectivores+Invertivores Score (0-10)
F	insect	\% Insectivores Score (0-10)
F	herbiv	\% Herbivores+Micro. Omniv. Score (0-10)
F	omni	\% Macrophagic Omnivores Score (0-10)
F	omnihb	\% Omniv. + Herbiv. Score (0-10)
F	repro	No. Reprod. Strat. Score (0-10)
F	tolrepr	\% Tolerant Spawners Score (0-10)
F	gravel	\% CIn. Subs. Spawners Score (0-10)
F	ibi1	IBI Score (0-100)--MAHA metrics+longlive
F	ibi4	IBI based on S:N and resp. (10 metrics)
F	ibi5	IBI Score (13 metrics)
F	ibi6	IBI score (12 metrics)

Type	Abbr.	Label
F	ibi7	IBI score (11 metrics)
F	ibi8	IBI score (8 metrics)
P	XBKF_W	Bankfull Width--Mean (m)
P	XBKF_H	Bankfull Height-Mean (m)
P	XINC_H	Channel Incision Ht.-Mean (m)
P	xgb	Rip Ground Layer Barren (Cover)
P	XCMGW	Rip Veg Canopy+Mid+Ground Woody Cover
P	xcdenbk	Mean Bank Canopy Density (\%)
P	XEMBED	Mean Embeddedness--Channel+Margin (\%)
P	xfc_ucb	Fish Cvr-Undercut Banks (Areal Prop)
P	xfc_all	Fish Cur-All Types (Sum Areal Prop)
P	xfc_nat	Fish Cvr-Natural Types (Sum Areal Prop) Fish Cvr-LWD,RCK,UCBorHUM(Sum Area
P	xfc_big	Prop)
P	w1_hall	Rip Dist--Sum All Types (ProxWt Pres)
P	w1_hnoag	Rip Dist--Sum NonAg Types (ProxWt Pres)
P	w1_hag	Rip Dist--Sum Agric Types (ProxWt Pres)
P	lrbs_bw5	Log10[Rel. Bed Stability] - Est. 2
P	rpgt75	Resid Pools $>75 \mathrm{~cm}$ deep (number/reach)
P	Isubd_sd	Substrate-StDev LOG10(Diam Class mm)
P	PCT_FN	Substrate Fines -- Silt/Clay/Muck (\%)
P	PCT_SA	Substrate Sand --. $06-2 \mathrm{~mm}$ (\%)
P	PCT_HP	Substrate Hardpan -- (\%)
P	pct_RC	Substrate Concrete (\%)
P	PCT_SAFN	Substrate Sand \& Fines -- <2 mm (\%)
P	PCT_SFGF	Substrate <= Fine Gravel (<=16 mm) (\%)
P	PCT_BIGR	Substrate >= Coarse Gravel (>16 mm) (\%)
P	PCT_BDRK	Substrate Bedrock (\%)
P	PCT_ORG	Substrate Wood or Detritus -- (\%)
P	xdepth	Thalweg Mean Depth (cm)
P	sddepth	Std Dev of Thalweg Depth (cm)

Type Abbr.		Label
P	xwidth	Wetted Width -- Mean (m)
P	pct_pool	Pools -- All Types (\% of reach)
P	XCM	Rip Veg Canopy + Mid Layer Cover
P	pfc_ohv	Overhang. Veg. Presence (\% Rch)
P	pfc_ucb	Undercut Bank Presence (\% Rch)
P	PCT_RI	Riffle (\% of reach)
W	WF01	Temperature (Deg C), REMAP Field
Warameters		
W	WF04	Flow (CFS), REMAP Field Parameters
W	WF05	pH (SU), REMAP Field Parameters
W	WG03	Alkalinity (bicarbonate, mg/L), in Water
W	WG11	Total Nitrogen (mg/L), by Calculation
W	WG12	CCloride (mg/L), in Water
		Dissolved Oxygen (mg/L), REMAP Field
W	WG17	Parameters
W	WG30	Turbidity (NTU)
W	WG31	Cardness (as CaCO3, mg/L), in Water by
Calculation		
W	WM30	Lead in Water by AA (Lead, ug/L)
W	WM32	Selenium (ug/L), in Water by AA
W	WM34	Mercury (ug/L), in Water
W	WM50	Selenium, Dissolved (ug/L), in Water by AA
W	WM63	Lead, Dissolved (ug/L), in Water by AA
W	WM68	Mercury, Dissolved (ug/L), in Water by AA
W	WT01	Ammonia, as Nitrogen (mg/L), in Water by
Automated Distillation		
W	WT02	Nitrate+Nitrite, as Nitrogen (mg/L), in Water
W	WT03	Total Kjeldahl Nitrogen (mg/L), in Water,
	Colorimetric	
W	WT04	Total Phosphorus(mg/L), in Water,
Colorimetric		
W	WT12	Sulfate (mg/L), in Water

[^0]: Analytes summed for comparison to guidance:

 * p,p'-DDT + p,p'-DDE + p,p'-DDD
 ** Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260
 *** Chlordane, technical + Heptachlor + Heptachlor Epoxide + cis-Chlordane + trans-Chlordane + cisNonachlor + trans-Nonachlor + Oxychlordane

