North Dakota Nutrient Criteria

Establishing State-wide Nutrient Criteria for Lakes and Reservoirs Using a Stochastic Modeling Approach

Prepared in cooperation with:
Houston Engineering, Inc.
Maple Grove, Minnesota
Background for Nutrient Criteria Development


• Recommended:
  – First lentic (non-flowing), then lotic (flowing), systems; address wetlands separately
  – Stratify criteria by hydrologic planning regions before using ecoregions

• Lacking information for “reference” lakes
  – Existing data lacks in abundance and distribution
  – Consider *regional modeling*
Background for Nutrient Criteria Development

- Numeric Standards N.D. Century Code 33-16
- Total P limit = 100 ppb maximum
  - Restoration target = 20 ppb goal
State-wide Classification of Lentic Systems was Critical First Step

- Must determine which water bodies are lakes? reservoirs? or wetlands?
- Lake and reservoir classes must be further divided into sub-classes
  - Must reflect how system will respond to environmental conditions
    - Hydrologic and nutrient loading
- Considered 11 metrics
Metrics for Classifying Lakes and Reservoirs

- Temperature / DO profiles (mixing)
- Morphoedaphic Index
- Metrics based on physical attributes:
  - \((\text{surface area} / \text{drainage area}) \times \text{volume} = \text{acre-feet}\)
  - \((\text{drainage area} \times \text{runoff depth}) / (\text{surface area} \times \text{mean depth}) = \text{dimensionless ratio of volumes}\)
  - \((\text{surface area}) / (\text{volume} / \text{fetch}) = \text{dimensionless ratio of surface area to receive solar radiation and energy required to mix}\)
  - Hydraulic residence time (from outputs of a regional model)
  - TP mass residence time (from outputs of a regional model)
  - Inflow rate \((Q_{\text{in}} \text{ as cubic feet per year}) / \text{surface area} = \text{velocity (ft/year)}\)
  - Overflow rate / evaporation rate (expressed in ft/year) = a water budget index
  - TP mass residence time in the water body / hydraulic residence time (from model) = \text{dimensionless ratio of hydraulic and mass residence times}\)
  - Surface area (from GIS)
## Description of Physical Data for Classes

<table>
<thead>
<tr>
<th>Assigned Class</th>
<th>Average Surface Area (acres)</th>
<th>Average Volume (ac-ft)</th>
<th>Average Drainage Area (sq.mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LAKES</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>74.1</td>
<td>575.9</td>
<td>13.8</td>
</tr>
<tr>
<td>II</td>
<td>156.8</td>
<td>1,770.8</td>
<td>12.9</td>
</tr>
<tr>
<td>III</td>
<td>364.3</td>
<td>4,444.3</td>
<td>16.6</td>
</tr>
<tr>
<td>IV</td>
<td>1,203.5</td>
<td>68,204.0</td>
<td>80.2</td>
</tr>
<tr>
<td><strong>RESERVOIRS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>86.2</td>
<td>637.8</td>
<td>70.0</td>
</tr>
<tr>
<td>II</td>
<td>279.6</td>
<td>2,760.1</td>
<td>144.8</td>
</tr>
<tr>
<td>III</td>
<td>1,613.0</td>
<td>19,741.5</td>
<td>1,167.9</td>
</tr>
<tr>
<td>IV</td>
<td>1,542.7</td>
<td>28,570.0</td>
<td>472.2</td>
</tr>
</tbody>
</table>
General Approach to Setting Lentic Criteria

• Use a regional model to:
  – Establish “current” conditions based on land use
  – Adjust land use parameters to assess what a potential “reference” condition may demonstrate

• Chose **Upper Red River Basin** as pilot area for developing regional model
Modeling Considerations: Setting the Stage for Using a Stochastic Approach

• Challenges
  – Extensive modeling area with much geographic variability
  – Poor abundance and diversity of data

• Benefits
  – Based on chance and probabilities
  – Incorporates uncertainty of inputs
  – Provides results with estimates of uncertainty
Implementation of the *Stochastic Modeling Approach*

- **Watershed Modeling Integrated with CNET model**
- **CNET Model (W.W. Walker)**
  - BATHTUB foundation
  - Spreadsheet based
  - Quickly evaluate multiple scenarios with same inputs across classes
  - Model inputs with probability distributions
- **Define model inputs with probability distributions**
  - Receiving water: Surface areas, drainage areas, volumes
  - Landscape: Curve numbers by land use, total phosphorus event mean concentrations, precipitation depths
Stochastic Model Outputs

- Evaluated box plots for “Current” conditions
- Evaluated line charts with varying land use to examine potential “Reference” conditions
Current Condition TP Concentrations for Lakes

![Boxplot showing TP concentrations for different classes of lakes.]

- **Class I:** Highest range of TP concentrations, with outliers and interquartile range (IQR) not easily visible.
- **Class II:** Lower range than Class I, with a smaller IQR and fewer outliers.
- **Class III:** Even lower range than Class II, with a minimal IQR and no outliers.
- **Class IV:** Lowest range of TP concentrations, with no outliers and a very small IQR.

The boxplots indicate that TP concentrations decrease with increasing class, suggesting improving water quality.
Current Condition TP Concentrations for Reservoirs.
Land Use Changes, Lakes

Guideline for Classified Lakes

Guideline for Goal in Lake Improvement

Median Annual TP Conc. (ppb)

Percent Cultivated Ag
Land Use Changes, Reservoirs
Next Steps

• Additional data collection
  – Lake and Reservoir Morphometry
  – Chemistry

• Policy decisions to assess acceptable thresholds for eutrophication

• Model refinements and further progress beyond pilot area
  – Include Model outputs for chlorophyll –a and transparency
  – Regional application?